Equations with many friends

An introduction to integrable systems

Mats Vermeeren

BMS Student Conference

February 22, 2017

Linear vs nonlinear differential equations

Linear equations are boring.

Nonlinear equations are difficult

Integrable systems are nonlinear equations that pretend to be linear

Click images for animations!

Hamiltonian Systems

Hamilton function

$$
H: \mathbb{R}^{2 N} \cong T^{*} Q \rightarrow \mathbb{R}:(q, p) \mapsto H(q, p)
$$

determines dynamics:

$$
\begin{aligned}
\dot{q}_{i} & =\frac{\partial H}{\partial p_{i}} \\
\dot{p}_{i} & =-\frac{\partial H}{\partial q_{i}}
\end{aligned}
$$

Geometric interpretation:

- Phase space $T^{*} Q$ with canonical symplectic 2-form ω
- flow along vector field X_{H} determined by $\iota_{X_{H}} \omega=\mathrm{d} H$
- the flows consists of symplectic maps and preserves H.

Poisson Brackets

Poisson bracket of two functionals on $T^{*} Q$:

$$
\{f, g\}=\sum_{i=1}^{N}\left(\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}}\right)
$$

Dynamics of a Hamiltonian system:

$$
\dot{q}_{i}=\left\{q_{i}, H\right\}, \quad \dot{p}_{i}=\left\{p_{i}, H\right\}, \quad \frac{\mathrm{d}}{\mathrm{~d} t} f(q, p)=\{f(q, p), H\}
$$

Properties:
anti-symmetry: $\{f, g\}=-\{g, f\}$
bilinearity: $\{f, g+\lambda h\}=\{f, g\}+\lambda\{f, h\}$
Leibniz property: $\{f, g h\}=\{f, g\} h+g\{f, h\}$
Jacobi identity: $\{f,\{g, h\}\}+\{g,\{h, f\}\}+\{h,\{f, g\}\}=0$

Liouville-Arnold integrability

What if $H(p, q)=p_{i}$?

$$
\dot{p}_{j}=-\frac{\partial H}{\partial q_{i}}=0 \quad \text { and } \quad \dot{q}_{j}=\frac{\partial H}{\partial p_{i}}=\delta_{i, j} .
$$

Liouville-Arnold integrability

What if $H(p, q)=p_{i}$?

$$
\dot{p}_{j}=-\frac{\partial H}{\partial q_{i}}=0 \quad \text { and } \quad \dot{q}_{j}=\frac{\partial H}{\partial p_{i}}=\delta_{i, j} .
$$

A Hamiltonian system with Hamilton function $H: \mathbb{R}^{2 N} \rightarrow \mathbb{R}$ is Liouville-Arnold integrable if there exist N functionally independent Hamilton functions $H=H_{1}, H_{2}, \ldots H_{N}$ such that $\left\{H_{i}, H_{j}\right\}=0$.

This implies that

- the flows commute.
- each H_{i} is a conserved quantity for all flows.
- the dynamics is confined to a leaf of the foliation $\left\{H_{i}=\right.$ const $\}$.
- There exists a symplectic change of variables $(p, q) \mapsto(H, T)$. Then

$$
H_{i}(H, T)=H_{i}
$$

Liouville-Arnold integrable systems evolve linearly in these variables!

Example: Kepler problem

Physical Hamiltonian:
$H_{2}=\frac{1}{2}|p|^{2}-\frac{1}{|q|}$
$\Rightarrow\left\{\begin{array}{l}\dot{q}=p \\ \dot{p}=-\frac{q}{|q|^{3}}\end{array}\right.$

Additional Hamiltonian:

$$
\begin{aligned}
& H_{1}=p^{T}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) q \\
& \Rightarrow\left\{\begin{array}{l}
\dot{q}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) p \\
\dot{p}=\left(\begin{array}{cl}
0 & 1 \\
-1 & 0
\end{array}\right) q
\end{array}\right.
\end{aligned}
$$

Example: Kepler problem

Physical Hamiltonian:

$$
H_{2}=\frac{1}{2}|p|^{2}-\frac{1}{|q|}
$$

$$
\Rightarrow\left\{\begin{array}{l}
\dot{q}=p \\
\dot{p}=-\frac{q}{|q|^{3}}
\end{array}\right.
$$

Additional Hamiltonian:

$$
\begin{aligned}
& H_{1}=p^{T}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) q \\
& \Rightarrow\left\{\begin{array}{l}
\dot{q}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) p \\
\dot{p}=\left(\begin{array}{cl}
0 & 1 \\
-1 & 0
\end{array}\right) q
\end{array}\right.
\end{aligned}
$$

Lax Pairs

A Lax Pair consists of two matrices (or operators) L and P,

- depending on the dynamical variables,
- acting on some auxiliary space,
- such that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} L=[P, L] \quad(:=P L-L P) \tag{*}
\end{equation*}
$$

is equivalent to the equations of motion.
Equation $(*)$ represents the compatibility of

- the eigenvalue problem $L(t) \phi(t)=\lambda \phi(t)$,
- and the linear equation $\frac{\mathrm{d} \phi(t)}{\mathrm{d} t}=P(t) \phi(t)$.

We get conserved quantities for free:

$$
\operatorname{tr}\left(L^{k}\right)=\text { const }
$$

Example: harmonic oscillator

$$
\begin{aligned}
L & =\left(\begin{array}{cc}
p & \omega q \\
\omega q & -p
\end{array}\right), \quad P=\left(\begin{array}{cc}
0 & -\frac{1}{2} \omega \\
\frac{1}{2} \omega & 0
\end{array}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t} L & =[P, L]=P L-L P \\
& \Rightarrow\left(\begin{array}{cc}
\dot{p} & \omega \dot{q} \\
\omega \dot{q} & -\dot{p}
\end{array}\right)=\left(\begin{array}{cc}
-\omega^{2} q & \omega p \\
\omega p & \omega^{2} q
\end{array}\right)
\end{aligned}
$$

Hence $\dot{p}=-\omega^{2} q$ and $\dot{q}=p$
Conserved quantities:

$$
\begin{aligned}
\operatorname{tr}(L) & =0, \\
\operatorname{tr}\left(L^{2}\right) & =2 p^{2}+2 \omega^{2} q^{2}=4 H, \\
\operatorname{tr}\left(L^{3}\right) & =0, \\
\operatorname{tr}\left(L^{4}\right) & =2\left(p^{2}+\omega^{2} q^{2}\right)^{2}=8 H^{2},
\end{aligned}
$$

Example: Korteweg-de Vries (KdV) hierarchy

Lax Pair description:

- $\frac{\mathrm{d}}{\mathrm{d} t_{k}} L=\left[P_{k}, L\right]$ with $L=\partial^{2}+v$.
- Only makes sense if $\left[P_{k}, L\right]$ is real-valued.
- This is the case for

$$
\begin{aligned}
& P_{3}=\partial^{3}+\frac{3}{2} v \partial+\frac{3}{4} v_{x}, \\
& P_{5}=\partial^{5}+\frac{5}{2} v \partial^{3}+\frac{15}{4} v_{x} \partial^{2}+\left(\frac{25}{8} v_{x x}+\frac{15}{8} v^{2}\right) \partial+\left(\frac{15}{16} v_{x x x}+\frac{15}{8} v v_{x}\right)
\end{aligned}
$$

Equations: $v_{t_{3}}=v_{x x x}+6 v v_{x} \quad \rightarrow$ shallow water waves (click for movie)

$$
v_{t_{5}}=v_{x x x x x}+20 v_{x} v_{x x}+10 v v_{x x x}+30 v^{2} v_{x}
$$

The problem of integrable discretization

- Many notions of integrability have a discrete counterpart
\rightarrow Integrable difference equations.
- Numerical discretizations almost always destroy integrability.
- What is the link between the continuous and discrete worlds?

Quad equations

$$
Q\left(v, v_{1}, v_{2}, v_{12}, \alpha_{1}, \alpha_{2}\right)=0 \text { on } \mathbb{Z}^{2}
$$

Subscripts of v denote lattice shifts, α_{1}, α_{2} are parameters.

Invariant under symmetries of the square.
Affine in each of v, v_{1}, v_{2}, v_{12}.
Integrability for systems quad equations: multi-dimensional consistency of

$$
Q\left(v, v_{i}, v_{j}, v_{i j}, \alpha_{i}, \alpha_{j}\right)=0,
$$

i.e. given v, v_{1}, v_{2} and v_{3}, the three ways of calculating v_{123} give the same result.

Example: discrete KdV equation

$$
\left(v-v_{12}\right)\left(v_{1}-v_{2}\right)-\alpha_{1}+\alpha_{2}=0
$$

Quad equations

$$
Q\left(v, v_{1}, v_{2}, v_{12}, \alpha_{1}, \alpha_{2}\right)=0 \text { on } \mathbb{Z}^{2}
$$

Subscripts of v denote lattice shifts, α_{1}, α_{2} are parameters.
Invariant under symmetries of the square.
Affine in each of v, v_{1}, v_{2}, v_{12}.
Integrability for systems quad equations: multi-dimensional consistency of

$$
Q\left(v, v_{i}, v_{j}, v_{i j}, \alpha_{i}, \alpha_{j}\right)=0,
$$

i.e. given v, v_{1}, v_{2} and v_{3}, the three ways of calculating v_{123} give the same result.

Example: discrete KdV equation

$$
\left(v-v_{12}\right)\left(v_{1}-v_{2}\right)-\alpha_{1}+\alpha_{2}=0
$$

Integrable continuum limits

Consider the continuous world $\mathbb{R}^{n+1}\left(x, t_{1}, \ldots, t_{n}\right)$
Identify each lattice shift with some shift in \mathbb{R}^{n+1}, depending on α_{1}, α_{2}.
Then we can write

$$
Q\left(v, v_{1}, v_{2}, v_{12}, \alpha_{1}, \alpha_{2}\right)=0
$$

as a power series:

$$
\sum_{i, j \in \mathbb{N}} F_{i, j} \alpha_{1}^{i} \alpha_{2}^{j}=0
$$

Example: for the discrete KdV equation, we find that $F_{0, j}=0(j=2,4, \ldots)$ is the KdV hierarchy. (Other $F_{i, j}$ are trivial modulo KdV equations)

Integrable continuum limits

Consider the continuous world $\mathbb{R}^{n+1}\left(x, t_{1}, \ldots, t_{n}\right)$ Identify each lattice shift with some shift in \mathbb{R}^{n+1}, depending on α_{1}, α_{2}. Then we can write

$$
Q\left(v, v_{1}, v_{2}, v_{12}, \alpha_{1}, \alpha_{2}\right)=0
$$

as a power series:

Differential equations,
I am your father!

$$
\sum_{i, j \in \mathbb{N}} F_{i, j} \alpha_{1}^{i} \alpha_{2}^{j}=0
$$

Example: for the discrete KdV equation, we find that $F_{0, j}=0(j=2,4, \ldots)$ is the KdV hierarchy. (Other $F_{i, j}$ are trivial modulo KdV equations)

Discrete integrable systems seem to be the fundamental objects. Discrete theory is well-developed, e.g. classification.
Can we translate such results to the continuous world?

Summary

Integrable systems pretend to be linear.

They can do so because they have many friends.

A single integrable difference equation can generate a full family of integrable differential equations.

Suggested reading

O. Babelon, D. Bernard, M. Talon. Introduction to classical integrable systems. Cambridge University Press, 2003.
Yu. Suris. The problem of integrable discretization: Hamiltonian approach. Birkhäuser, 2012.
F. Nijhoff. Discrete Systems and Integrability. Lecture Notes, University of Leeds.

