Modified equations and $\frac{\pi^{2}}{6}$

Mats Vermeeren

BMS Student Conference

February 21, 2018

Berlin
Mathematical School

Basel Problem

In 1644, Pietro Mengoli wondered

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=?
$$

Solved by Leonhard Euler in 1735: $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$.

Basel Problem

In 1644, Pietro Mengoli wondered

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=?
$$

Solved by Leonhard Euler in 1735: $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$.
Today many proofs are known.
One proof relies on the series expansion

$$
\left(\arcsin \frac{h}{2}\right)^{2}=\frac{1}{2} \sum_{k=1}^{\infty} \frac{(k-1)!^{2}}{(2 k)!} h^{2 k}
$$

Setting $h=1$ in this expansion + some algebraic manipulations, yields the desired result.
\rightarrow Relocates the difficulty: proving this expansion is not easy.

So let's talk about something else

- Given is (a solution of) a differential equation.

So let's talk about something else

- Given is (a solution of) a differential equation.
- And a numerical approximation thereof.

We make an error, but how to compare discrete with continuous?

So let's talk about something else

- Given is (a solution of) a differential equation.
- And a numerical approximation thereof.

We make an error, but how to compare discrete with continuous?

- Can we find a modification of the differential equation, that (has a solution that) interpolates the discrete system?

Modified equation for a very simple system

Consider the ODE

$$
\dot{x}(t)=-x(t)
$$

and its explicit Euler discretization with step size h

$$
\frac{x_{j+1}-x_{j}}{h}=-x_{j}
$$

Modified equation

$$
\dot{x}=F(x ; h)
$$

whose solutions satisfy the difference equation, in the sense that

$$
x(t+h)-x(t)=-h x(t)
$$

The right hand side is a power series,

$$
F(x ; h)=f_{0}(x)+h f_{1}(x)+h^{2} f_{2}(x)+\ldots .
$$

Modified equation for a very simple system

$$
\begin{aligned}
& x(t+h)-x(t)=-h x(t) \\
\Rightarrow \quad & h \dot{x}(t)+\frac{h^{2}}{2} \ddot{x}(t)+\frac{h^{3}}{6} x^{(3)}(t)+\ldots=-h x(t) .
\end{aligned}
$$

The higher derivatives can be written as

$$
\begin{aligned}
& \ddot{x}= F^{\prime}(x ; h) F(x ; h) \\
&=\left(f_{0}^{\prime}(x)+h f_{1}^{\prime}(x)+h^{2} f_{2}^{\prime}(x)+\ldots\right)\left(f_{0}(x)+h f_{1}(x)+h^{2} f_{2}(x)+\ldots\right), \\
& x^{(3)}= F^{\prime \prime}(x ; h) F(x ; h)^{2}+F^{\prime}(x ; h)^{2} F(x ; h) \\
&=\left(f_{0}^{\prime \prime}(x)+h f_{1}^{\prime \prime}(x)+h^{2} f_{2}^{\prime \prime}(x)+\ldots\right)\left(f_{0}(x)+h f_{1}(x)+h^{2} f_{2}(x)+\ldots\right)^{2} \\
&+\left(f_{0}^{\prime}(x)+h f_{1}^{\prime}(x)+h^{2} f_{2}^{\prime}(x)+\ldots\right)^{2}\left(f_{0}(x)+h f_{1}(x)+h^{2} f_{2}(x)+\ldots\right) \\
& \Rightarrow h\left(f_{0}+h f_{1}+h^{2} f_{2}+\ldots\right)+\frac{h^{2}}{2}\left(f_{0}^{\prime} f_{0}+h f_{1}^{\prime} f_{0}+h f_{0}^{\prime} f_{1}+\ldots\right) \\
& \quad+\frac{h^{3}}{6}\left(f_{0}^{\prime \prime} f_{0}^{2}+f_{0}^{\prime 2} f_{0}+\ldots\right)+\ldots=-h x,
\end{aligned}
$$

Modified equation for a very simple system

Grouping terms by order in h we find

$$
\begin{aligned}
h\left(f_{0}+x\right) & +h^{2}\left(f_{1}+\frac{1}{2} f_{0}^{\prime} f_{0}\right) \\
& +h^{3}\left(f_{2}+\frac{1}{2} f_{1}^{\prime} f_{0}+\frac{1}{2} f_{0}^{\prime} f_{1}+\frac{1}{6} f_{0}^{\prime \prime} f_{0}^{2}+\frac{1}{6} f_{0}^{\prime 2} f_{0}\right)+\ldots=0
\end{aligned}
$$

For a power series to be equal to zero, all of the coefficients must be zero. We find

$$
f_{0}(x)=-x, \quad f_{1}(x)=-\frac{1}{2} x, \quad f_{2}(x)=-\frac{1}{3} x
$$

hence the modified equation is

$$
\dot{x}=-x-\frac{h}{2} x-\frac{h^{2}}{3} x-\ldots
$$

- Leading order term agrees with the original differential equation.
- Higher order terms reflect the discretization error.

What have we gained through all this work?

- $x_{j+1}=x_{j}-h x_{j}$ is linear, so it can be solved exactly
- Here the modified equation doesn't provide any new information.

What have we gained through all this work?

- $x_{j+1}=x_{j}-h x_{j}$ is linear, so it can be solved exactly
- Here the modified equation doesn't provide any new information.
- However, the same procedure can be applied to nonlinear difference equations too.
(Terms tend to become more and more complicated as the order in h increases.)

Definition

The differential equation $\dot{x}=F(x ; h)$ is a modified equation for the difference equation

$$
\Psi\left(x_{j}, x_{j+1} ; h\right)=0
$$

if (for small $h>0$) every solution x of $\dot{x}=F(x ; h)$ satisfies

$$
\Psi(x(t), x(t+h) ; h)=0
$$

Second order ODEs

Definition

The differential equation $\ddot{x}=F(x, \dot{x} ; h)$ is a modified equation for the second order difference equation

$$
\Psi\left(x_{j-1}, x_{j}, x_{j+1} ; h\right)=0
$$

if (for small $h>0$) every solution x of $\ddot{x}=F(x, \dot{x} ; h)$ satisfies

$$
\Psi(x(t-h), x(t), x(t+h) ; h)=0
$$

for all $t \in \mathbb{R}$.
In general F is a formal power series in h. To avoid convergence issues one can truncate at an arbitrary order k and relax the condition to

$$
\Psi(x(t-h), x(t), x(t+h) ; h)=\mathcal{O}\left(h^{k}\right)
$$

Harmonic oscillator

Consider the ODE

$$
\ddot{x}=-x
$$

and its Störmer-Verlet discretization

$$
\frac{x_{j+1}-2 x_{j}+x_{j-1}}{h^{2}}=-x_{j}
$$

The modified equation here is unusually simple, not $\ddot{x}=F(x, \dot{x} ; h)$ but

$$
\ddot{x}=F_{h}(x)=f_{0}(x)+h^{2} f_{2}(x)+h^{4} f_{4}(x)+\cdots .
$$

The higher derivatives then look like

$$
\begin{aligned}
& x^{(3)}=F_{h}^{\prime} \dot{x}, \\
& x^{(4)}=F_{h}^{\prime \prime} \dot{x}^{2}+F_{h}^{\prime} F_{h}, \\
& x^{(5)}=F_{h}^{(3)} \dot{x}^{3}+3 F_{h}^{\prime \prime} F_{h} \dot{x}+F_{h}^{\prime 2} \dot{x}, \\
& x^{(6)}=F_{h}^{(4)} \dot{x}^{4}+6 F_{h}^{(3)} F_{h} \dot{x}^{2}+5 F_{h}^{\prime \prime} F_{h}^{\prime} \dot{x}^{2}+3 F_{h}^{\prime \prime} F_{h}^{2}+F_{h}^{\prime 2} F_{h},
\end{aligned}
$$

Harmonic oscillator

Using Taylor expansion we find

$$
x(t \pm h)=x \pm h \dot{x}+\frac{h^{2}}{2} \ddot{x} \pm \frac{h^{3}}{6} x^{(3)}+\frac{h^{4}}{24} x^{(4)} \pm \frac{h^{5}}{120} x^{(5)}+\frac{h^{6}}{720} x^{(6)}+\cdots
$$

Plug this into the difference equation

$$
-h x(t)=x(t+h)-2 x(t)+x(t-h)
$$

and expand:
$-h^{2} x=h^{2} \ddot{x}+\frac{h^{4}}{12} x^{(4)}+\frac{h^{6}}{360} x^{(6)}+\ldots$

$$
\begin{aligned}
= & h^{2}\left(f_{0}+h^{2} f_{2}+h^{4} f_{4}\right)+\frac{h^{4}}{12}\left(f_{0}^{\prime \prime} \dot{x}^{2}+h^{2} f_{2}^{\prime \prime} \dot{x}^{2}+f_{0}^{\prime} f_{0}+h^{2} f_{0}^{\prime} f_{2}+h^{2} f_{2}^{\prime} f_{0}\right) \\
& \quad+\frac{h^{6}}{360}\left(f_{0}^{(4)} \dot{x}^{4}+6 f_{0}^{(3)} f_{0} \dot{x}^{2}+5 f_{0}^{\prime \prime} f_{0}^{\prime} \dot{x}^{2}+3 f_{0}^{\prime \prime} f_{0}^{2}+f_{0}^{\prime 2} f_{0}\right)+\ldots \\
= & h^{2} f_{0}+h^{4}\left(f_{2}+\frac{1}{12}\left(f_{0}^{\prime \prime} \dot{x}^{2}+f_{0}^{\prime} f_{0}\right)\right)
\end{aligned}
$$

Harmonic oscillator

Matching terms of the same order in h, we can solve recursively for the f_{i} :

$$
f_{0}(x)=-x, \quad f_{2}(x)=-\frac{x}{12}, \quad f_{4}(x)=-\frac{x}{90},
$$

Hence the modified equation is

$$
\ddot{x}=-x-\frac{h^{2}}{12} x-\frac{h^{4}}{90} x-\ldots
$$

In other examples, calculations quickly become complicated, but the same construction works in general. This shows that:

Theorem
If there exists a modified equation that can be represented as a power series

$$
\ddot{x}=f_{0}(x, \dot{x})+h f_{1}(x, \dot{x})+h^{2} f_{2}(x, \dot{x})+h^{3} f_{3}(x, \dot{x})+\ldots
$$

then it is unique.

Numerical experiment for the harmonic oscillator

-•• solution of $x_{j+1}-2 x_{j}+x_{j-1}=-h^{2} x_{j}$
------ solution of $\ddot{x}=-x$
(original ODE)
solution of $\ddot{x}=-x-\frac{h^{2}}{12} x$
solution of $\ddot{x}=-x-\frac{h^{2}}{12} x-\frac{h^{4}}{90} x$
all with $h=1$.

Tail end of the graph

Discrete system with $h=1$ has period 6

Discrete system with $h=1$ has period 6

The modified equation is $\ddot{x}=-\frac{\pi^{2}}{9} x$.
Proof. Because the difference equation is linear, we can solve it exactly:

$$
x_{j}=A e^{-2 i j \theta}+B e^{2 i j \theta}
$$

where $\theta=\arcsin \left(\frac{h}{2}\right)$. The interpolating curve

$$
x(t)=A e^{-2 i t \theta / h}+B e^{2 i t \theta / h}
$$

satisfies the differential equation

$$
\ddot{x}=-\left(\frac{2}{h} \arcsin \left(\frac{h}{2}\right)\right)^{2} x .
$$

Back to Basel

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=?
$$

We want to show

$$
\begin{equation*}
\left(\arcsin \frac{h}{2}\right)^{2}=\frac{1}{2} \sum_{k=1}^{\infty} \frac{(k-1)!^{2}}{(2 k)!} h^{2 k} \tag{*}
\end{equation*}
$$

The modified equation in our example can be written as

- a closed-form expression involving the LHS of (*),
- a power series, where the coefficients can be calculated recursively.

Still needed:

- explicit expressions for the coefficients of that power series, to identify it with the RHS of $(*)$.

Determining the coefficients of the power series

For any smooth curve x, a second difference can be expanded as

$$
\begin{aligned}
& x(t-j h)-2 x(t)+x(t+j h) \\
& =(j h)^{2} \ddot{x}(t)+\frac{2(j h)^{4}}{4!} x^{(4)}(t)+\ldots+\frac{2(j h)^{2 k}}{(2 k)!} x^{(2 k)}(t)+\mathcal{O}\left(h^{2 k+2}\right)
\end{aligned}
$$

or, in matrix form,

$$
\begin{array}{r}
\left(\begin{array}{c}
x(t-h)-2 x(t)+x(t+h) \\
x(t-2 h)-2 x(t)+x(t+2 h) \\
\vdots \\
x(t-k h)-2 x(t)+x(t+k h)
\end{array}\right)=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
2^{2} & 2^{4} & \ldots & 2^{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
k^{2} & k^{4} & \ldots & k^{2 k}
\end{array}\right)\left(\begin{array}{c}
h^{2} \ddot{x}(t) \\
\frac{2 h^{4}}{4!} x^{(4)}(t) \\
\vdots \\
\frac{2 h^{2 k}}{(2 k)!} x^{(2 k)}(t)
\end{array}\right) \\
+\mathcal{O}\left(h^{2 k+2}\right) .
\end{array}
$$

Determining the coefficients of the power series

Using Cramer's rule we solve for $h^{2} \ddot{x}(t)$,

In the denominator we have a Vandermonde determinant that equals

$$
(k!)^{2} \prod_{1 \leq i<j \leq k}\left(j^{2}-i^{2}\right) .
$$

The numerator

$$
\left|\begin{array}{cccc}
x(t-h)-2 x(t)+x(t+h) & 1 & \ldots & 1 \\
x(t-2 h)-2 x(t)+x(t+2 h) & 2^{4} & \ldots & 2^{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
x(t-k h)-2 x(t)+x(t+k h) & k^{4} & \ldots & k^{2 k}
\end{array}\right|=?
$$

Once more we are helped by the linearity of the difference equation: the sum $x_{i-j}+x_{i+j}$ can be written as

$$
x_{i-j}+x_{i+j}=2 T_{k}\left(1-\frac{h^{2}}{2}\right) x_{i}
$$

where T_{k} denotes the k-th Chebyshev polynomial of the first kind.
Hence any solution of the modified equation satisfies

$$
\begin{aligned}
x(t-j h)+x(t+j h) & =2 T_{j}\left(1-\frac{h^{2}}{2}\right) x(t) \\
& =(-1)^{k} h^{2 j} x(t)+\text { terms of lower order in } h .
\end{aligned}
$$

The numerator

Let the curve x be a solution of the modified equation. Then the $h^{2 k}$-term of

$$
\left|\begin{array}{cccc}
x(t-h)-2 x(t)+x(t+h) & 1 & \ldots & 1 \\
x(t-2 h)-2 x(t)+x(t+2 h) & 2^{4} & \ldots & 2^{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
x(t-k h)-2 x(t)+x(t+k h) & k^{4} & \ldots & k^{2 k}
\end{array}\right|
$$

is

$$
\left|\begin{array}{cccc}
0 & 1 & \ldots & 1 \\
0 & 2^{4} & \ldots & 2^{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
0 & (k-1)^{4} & \ldots & (k-1)^{2 k} \\
(-1)^{k} x(t) & k^{4} & \ldots & k^{2 k}
\end{array}\right|=-\left|\begin{array}{ccc}
1 & \ldots & 1 \\
2^{4} & \ldots & 2^{2 k} \\
\vdots & \ddots & \vdots \\
(k-1)^{4} & \ldots & (k-1)^{2 k}
\end{array}\right| x(t)
$$

The numerator

Let the curve x be a solution of the modified equation. Then the $h^{2 k}$-term of

$$
\left|\begin{array}{cccc}
x(t-h)-2 x(t)+x(t+h) & 1 & \ldots & 1 \\
x(t-2 h)-2 x(t)+x(t+2 h) & 2^{4} & \ldots & 2^{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
x(t-k h)-2 x(t)+x(t+k h) & k^{4} & \ldots & k^{2 k}
\end{array}\right|
$$

is

$$
\begin{array}{|l}
\left|\begin{array}{cccc}
0 & 1 & \ldots & 1 \\
0 & 2^{4} & \ldots & 2^{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
0 & (k-1)^{4} & \ldots & (k-1)^{2 k} \\
(-1)^{k} x(t) & k^{4} & \ldots & k^{2 k}
\end{array}\right|=-\left|\begin{array}{ccc}
1 & \ldots & 1 \\
2^{4} & \cdots & 2^{2 k} \\
\vdots & \ddots & \vdots \\
(k-1)^{4} & \ldots & (k-1)^{2 k}
\end{array}\right| x(t) \\
\\
=-((k-1)!)^{4}\left(\prod_{1 \leq i<j \leq k-1}\left(j^{2}-i^{2}\right)\right) x(t)
\end{array}
$$

The coefficients of the power series

Expansion of $x(t-j h)-2 x(t)+x(t+j h)(j=1, \ldots, k)$ leads to

$$
h^{2} \ddot{x}(t)=\frac{|*|}{|*|}+\mathcal{O}\left(h^{2 k+2}\right) .
$$

For solutions of the modified equation, we found that the $h^{2 k}$-term of $\frac{|*|}{|*|}$ is

$$
-\frac{((k-1)!)^{4} \prod_{1 \leq i<j \leq k-1}\left(j^{2}-i^{2}\right)}{(k!)^{2} \prod_{1 \leq i<j \leq k}\left(j^{2}-i^{2}\right)} x(t)=-\frac{2(k-1)!^{2}}{(2 k)!} h^{2 k-2} x(t)
$$

We have found explicit expressions for the terms of the modified equation!
In its power series form, the modified equation is

$$
\ddot{x}=-\sum_{k=1}^{\infty} \frac{2(k-1)!^{2}}{(2 k)!} h^{2 k-2} x .
$$

Fitting the pieces together

We have two expressions for the modified equation:

$$
\begin{aligned}
\ddot{x} & =-\sum_{k=1}^{\infty} \frac{2(k-1)!^{2}}{(2 k)!} h^{2 k-2} x, \\
\ddot{x} & =-\left(\frac{2}{h} \arcsin \left(\frac{h}{2}\right)\right)^{2} x .
\end{aligned}
$$

Since the modified equation, written in the form " $\ddot{x}=$ power series" is unique, it follows that both expressions coincide,

$$
-\left(\frac{2}{h} \arcsin \frac{h}{2}\right)^{2}=-\sum_{k=1}^{\infty} \frac{2(k-1)!^{2}}{(2 k)!} h^{2 k-2}
$$

This proves:
Theorem

$$
\left(\arcsin \frac{h}{2}\right)^{2}=\frac{1}{2} \sum_{k=1}^{\infty} \frac{(k-1)!^{2}}{(2 k)!} h^{2 k}
$$

Fitting the pieces together

Plugging in $h=1$ we find

$$
\sum_{k=1}^{\infty} \frac{(k-1)!^{2}}{(2 k)!}=\frac{\pi^{2}}{18}
$$

By elementary (but nontrivial) calculations one can show that

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=3 \sum_{k=1}^{\infty} \frac{(k-1)!^{2}}{(2 k)!}
$$

which leads to the conclusion that

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

We worked too hard

The closed-form expression of the modified equation

$$
\ddot{x}=-\left(\frac{2}{h} \arcsin \left(\frac{h}{2}\right)\right)^{2} x
$$

is not needed to arrive at $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$.

We worked too hard

The closed-form expression of the modified equation

$$
\ddot{x}=-\left(\frac{2}{h} \arcsin \left(\frac{h}{2}\right)\right)^{2} x
$$

is not needed to arrive at $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$.

If is sufficient to known that

- The modified equation is $\ddot{x}=-\sum_{k=1}^{\infty} \frac{2(k-1)!^{2}}{(2 k)!} h^{2 k-2} x$.
- Solutions to the discrete system $x_{j+1}-2 x_{j}+x_{j-1}=-h^{2} x_{j}$ for $h=1$ are 6 -periodic, and hence solutions to the modified equation as well.
From these two facts it follows that $\sum_{k=1}^{\infty} \frac{(k-1)!^{2}}{(2 k)!}=\frac{\pi^{2}}{18}$

Summary

Modified equations

- Important tool in numerical analysis.
- Reversing the discretization ("Backward error analysis"):
we look for a differential equation for which the discretization would have been exact.
- Usually given by formal power series.

Summary

Modified equations

- Important tool in numerical analysis.
- Reversing the discretization ("Backward error analysis"):
we look for a differential equation for which the discretization would have been exact.
- Usually given by formal power series.

Specific example where the power series converges:

- Properties of the discrete system can be useful to evaluate it.
- Reverses the direction of thinking once more: we use the discrete system to learn about the continuous one.
- Same direction as numerical integration, but now everything is exact: we use the periodicity to evaluate the power series in the rhs.

Relevance

Relevance

I don't know...

At first submission (2015)

- Reviewer \#2 strikes again:
"[it is] far from utility, beauty and necessity"

Relevance

I don't know ...

At first submission (2015)

- Reviewer \#2 strikes again:
"[it is] far from utility, beauty and necessity"

Many iterations later:

- to appear in the Mathematical Intelligencer
- Pre-print:
V. Modified equations and the Basel problem. arXiv:1506.05288v3

But I still don't know ...

