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Lagrangian mechanics
Continuous
> Action: S = [P L(x(t), x(t))dt
» Euler-Lagrange equation:

oL . d oL :
a(x(t),x(t) — &a(x(t),x(t)) =0.

Discrete

> Action: Sgisc = Ef:l hLgise(xj—1, x;), with

Laise (x((t — h), x(t)) = L(x(t), x(t)),
» Euler-Lagrange equation:
Do Lgise(Xj—1, Xj) + D1 Lgisc(Xj, Xj+1) = 0.
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Modified Equations

Exact solution of a differential equation:

Sqution of the modified differential equation:
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Definition (First order equations)
The differential equation x = fy(x), where
fo(x) = fo(x) + hfy(x) + WP H(x) + ...

is a modified equation for the difference equation Wy(x;j, xj+1) =0
if, for every k, every solution of the truncated differential equation

x = Tk (fa(x))

satisfies
W (x(t), x(t + h)) = O(hk+1)

for all t.
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Definition (Second order equations)

The differential equation X = fp(x, x), where
fio(x, X) = fo(x, X) + hfi(x, %) + WP H(x, X) + ...

is @ modified equation for the second order difference equation
VY (xj—1, Xj, Xj+1) = 0 if, for every k, every solution of the
truncated differential equation

X = 77( (fh(X7X))

satisfies
Wi(x(t — h), x(t), x(t + h)) = O(h*+1)

for all t.
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Example
» Differential equation: X = —g(x)
» Discretization: xj11 — 2x; + xj_1 = —h?*g(x;).

If X(t) = X, then
h? . A
inl:X(tﬂ:h):le:h)-(—i—?)'éj:gxm)_'_“”

Plugging this into the difference equation we find that (with v = x)

—hg(x )—h2x+ (4)+0(h6)

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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Look for a modified equation of the form
X = fo(x) = fo(x, X) + W f(x, X) + O(h*).
With this ansatz:

4
—hg(x) = h?% + f—2x(4) + O(h%)

h4
= W2(fo + h*R) + 5 (Fse(v, v) + 2fo(fo, v) + foxfo
+ ﬁ),vv(fb» ﬁ)) + fO,vfb,XV + fO,vﬂ),va) + O(hﬁ)

» The h*-term of this equation gives us fo(x,v) = —g(x). In
particular, partial derivatives of fy with respect to v are zero.

» The h*-term then reduces to £ = 15(gu(V, v) — gx&)-

We find that the modified equation is
2

%= —g(x) + %(gxx(k, x) — 8xg) + O(h*).
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Question

From now on we consider Lagrangian equations

L=J(oR)-UK) = %=-U(

and variational integrators.

Are their modified equations are Lagrangian as well?

The truncated modified equation from our Example

2
x:—w+%w%x@—wwy

is not an Euler-Lagrange equation.

However, we will see that it can be obtained from an EL equation
by solving it for X and truncating the resulting power series.

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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General idea

Look for a modified Lagrangian Ly,04(x, x) such that the discrete
Lagrangian Lgjs. is its exact discrete Lagrangian, i.e.

jh
/ Lanoa(x(1), (D))t = hLase (x(( — 1)h), x(jh).

(-Dh
The Euler-Lagrange equation of L4 will then be the modified
equation.

The best we can hope for is to find such a modified Lagrangian up
to an error of arbitrarily high order in h.

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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We can write the discrete Lagrangian as a function of x and its
derivatives, all evaluated at the point jh — g

h., 1(h\*,
Edisc[x] = Ldisc<X—§X+§(—) X — ...,

=~ Ldisc(Xj—la X_/)

Here and in the following:

> we evaluate at t = jh — g whenever we omit the variable t,

i.e. X =X (_jh — g),

» xj = x(jh) and xj_1 = x((j — 1)h).

Modified Equations for Variational Integrators
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20

We want to write the discrete action
n
5disc = Z hLdiSC(Xj—LXJ Z h['dlsc h - _)]
j=1
as an integral.
Lemma

For any smooth function f : R — RN we have

nh ©°

. L by 20 (1=2i 1\ B2i /(20)
Z¥f072>_0 Z;;@ Ume(ﬂﬁ

nh h2 . h4 ()
ZA OM—ﬁKWmefUH”)M

where B; are the Bernoulli numbers.
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Proof (sketch). The h?-term can easily be obtained by Taylor
expansion. We have

(e~ 87F () + () at
= hf (&) + /Oh — (f(t) + (’)(t)) dt + O(h*)

Two proof strategies:

» iterate this, » use Euler-Maclaurin formula. [ |

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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Definition
We call
> o h? By d?
LanodX(8)] 1= Laselx()] + > (222 — 1) @ )f Tz Laise[x(2)]
i=1
h? d2 7h* d*
= ﬁdisc[x(t) 24 dtzﬁdlsc[ ( )] 5760 dt4£dISC[X(t)]

the modified Lagrangian of Lgjsc.

Lemma

Emod[X] = [’(X7X) + O(h)

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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Towards a first order Lagrangian
The modified Lagrangian

h? d2 7h* a4
Laisc[x(t)] — 24 dr2 — Laisc[x(t)] + 5760 di? —z Laisc[x(t)] +

is an asymptotic power series in h and contains derivatives x(7) of
every order /.

For every truncation of the power series L,,,q4 we will construct an
equivalent Lagrangian that is of first order, i.e. that depends only
on x and x.

Mats Vermeeren, TU Berlin
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For any k € N we look for a first order Lagrangian of the form

Linod k (x:X) = Lo(x, %) + hL(x, %) + ... + B L (x, %).

Solve the Euler-Lagrange equation

0% A%y, | (04 A%
ox dt ox -

for x. This gives us an expression of the form
X = F3(x, %) + hF2(x, %) + ... + h*F2(x, x) + O(h*t1).
Similar expressions for the higher derivatives follow

xB®) = F3(x, %) + hF(x, x) + ... + HF3(x, x) + O(h<*Y),
x®) = FHx, %) + hFE(x, %) + ... + hF}(x, X) + O(h<H1),

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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We want that Lyod k(X, X) = Lmoa[x] + O(h**1) for critical
curves. This is the case if and only if for any k there holds

Emod,k (X,X) = fo(x,)'() + ...+ hkfk (X,X)

= Emod[x] . + O(hk+1)

X=F2(x,%)+..+h*"1F2  (x,%)
xC)=F3(x,x)+...+H*"1F3 | (x,%)

= Lo ‘ O(H+1),
alx] EL equations of Ly0d,k—1 +0O( )

This gives us a recurrence relation for the L0 k-

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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We want that Lyod k(X, X) = Lmoa[x] + O(h**1) for critical
curves. This is the case if and only if for any k there holds

Emod,k (X,X) = fo(x,)'() + ...+ hkfk (X,X)

=L X
mod(x] X=F2(x,X) 4 TF2 (x,%X)

xC)=F3(x,x)+...+H*"1F3 | (x,%)

+ O(hk-l-l)

= Lo ‘ O(H+1),
alx] EL equations of Ly0d,k—1 +0O( )

This gives us a recurrence relation for the L0 k-

Do the critical curves of L,,0q4 and L0« agree?

We need Liod k(X, X) = Lmoa[x] + O(h*1) not just on but also
near critical curves.

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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Definition

(a) A curve x : [a, b] — R is k-critical for some action
S= fab L dt if for any variation of x there holds

5S = O(h*1 ||ox|),

where ||0x| = fab |6x(t)|dt is the usual 1-norm.

(b) A discrete curve (x;); is k-critical for some action
Saisc = ZJ- Laisc(Xj, Xj+1) if for any variation of (x;); there
holds
05 = O(H<H|(8x)51),

where [[(5);]| = 32 hlox;.
The scaling is chosen such that [|dx|| = (1 + O(h))]|(6x(jh));]|-

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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We can characterize k-critical curves by the fact that they satisfy
the Euler-Lagrange equations up to a certain order.

Lemma

(a) A curve x : [a, b] — R is k-critical for the action S = fabﬁdt
if and only if it satisfies the corresponding Euler-Lagrange
equations up to order k.

(b) A discrete curve (x;); is k-critical for the action
Sdisc = Zj Laisc(Xj, Xj+1) if and only if it satisfies the
corresponding discrete Euler-Lagrange equations up to order k.

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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Lemma

The Euler-Lagrange equations of Ly,,q[x] and of the first order
Lagrangian Lyodq,x(x,X) are equivalent up to order k.

Proof. We need to show that both Lagrangians have the same
k-critical curves,

Ck(Lmod) = Ck(Lmod,k)-

We use induction on k.

We have Ly,04,0(X, X) = To (Lmod[x]), 50 Co(Lmod) = Co(Lmod,0)-

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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Proof (continued). Now suppose that Ci(Lmod) = Ck(Lmod k) for
some fixed k. The higher derivatives of x € Cx(Lmoa k) are given

by
X = F2(x,x) + ...+ h*F3(x,x) + O(h*T1),
x®) = F3(x, %) + ...+ WF3(x, %) + O(h<Y),

so we can conclude from the recurrence relation
o\ . k+1 -
Lmod k+1(x, X) = .,%(x7 x) +.. T (x,x)

— k+2
= Lanod¥|xrasoy oot b2 oy + OHT2).
xCV=F3(Lo)+..+hF (Lo, ... L)

that for any x € Ci(Lmod ),

Emod,k—f—l(X, X) = ﬁmod[X] + O(hk+2).

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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Proof (continued). For every k-critical curve x we have

b b
/ Lokt (x(£), X(£)) dt = / Lonoalx()] dt + O(K<2),

Now observe that:

> every (k + 1)-critical curve for Ly,04 is also a k-critical curve,
i.e. Ck+1([,m0d) C Ck(['rnod)-

> Tk(Lmod k+1) = Lmod k 50 Chr1(Lmod k+1) C Ck(Lmod k)
» any sufficiently small variation of a k-critical curve is still

k-critical.

To determine if a curve is (k + 1)-critical, it is sufficient to
consider variations in the set of k-critical curves.

Therefore C1(Lmod k+1) = Chk+1(Lmod)- u

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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Main result

Theorem

For a discrete Lagrangian Lgisc that is a consistent discretization of
some L, the k-th truncation of the Euler-Lagrange equation of
Lmod,k(X, X) is the k-th truncation of the modified equation.

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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Proof. Let x be a solution of the Euler-Lagrange equation for
Lmod,k(X, X), truncated after order k. Consider the discrete curve

(x7); = (x(h));.
» x is k-critical for the action [ Lpoa (X, x)dt.
» By the Lemma, x is k-critical for the action [ Ly,0q[x]dt.

» By construction, the actions

Saise = 32 Lase(y(jh), y (G + 1)) and S = [ Luoaly(1)] dt
are equal for any smooth curve y.

» Therefore the discrete curve (x(jh)); is k-critical for the
discrete action Sgis.. Hence

D2LdiSC(X(t_h)7 X(t))+D1Ldisc(X(t), X(t"—h)) = O(hk'H'). [ ]

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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Example: Stormer-Verlet discretization

a&@:%@g@—ug)

1 /X411 —X Xj41— X 1 1
Lawrgi2) = 5 (279 B0 - S G) - JU ).

2 h h
Its Euler-Lagrange equation is

Xj+1 — 2Xj + Xj—1
h2

= =U'(x).
We have
Lawel = (% + 5x® x4 Bx® 1)

—%U@—gx+%@fx—“)—%UQ+§X+%@f&+“).

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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1 h?
Laisel] = 5 (%, %)=U+2; (<>'< X3y - 3U'% — 3U”(>'<,>'<)>+O(h4),

From this we calculate the modified Lagrangian,

2 d2
['mod[X] = ['disc[x] 24 dt2 ﬁdlSC[X] + O(h4)
1
= (kR — Ut ﬁ <<>'<,x(3)> —3U% - 3U”(>‘<,>‘<))
h2 . 3 ] - I [ - . 4
— <<X 2+ (oY - Uk~ U (x,x)> +O(h)
2
- % (x,x) — U+ 3—4 (= (%,%) —2U'% — 2U" (%, %)) + O(h*).
Eliminate second derivatives using X = —U’ + O(h?),

1 h?
Emod,3(X7X) = 5 <X,X> - U+ ﬂ (U/U/ — 2U“()—<,)'()) .

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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The modified Lagrangian is

1 h?
Lmoas(x, %) = 5 (%,5) = U+ 2 (U'U' = 2U" (5, %))

Observe that this Lagrangian is not separable for general U.
The corresponding Euler-Lagrange equation is
h2
—k—Uk+ﬂﬁuﬂw—zuwx@+4U%x@+4UW):0

Solving this for X we find the modified equation

x=—U+ — (U"(x,%) = U"U") + O(h*).

12(

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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Summary

» Truncations of the modified equations are not Euler-Lagrange
equations.

» But they are truncations of EL equations solved for X.

» Obtaining a high-order modified Lagrangian Ly,0q[x] is
relatively straighforward.

» From Lyd[x] a first order Lagrangians Ly,04,«(x, X) can be
found recursively.

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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Outlook

> In the ODE case the modified Lagrangian can also be obtained
by Legendre transform from the modified Hamiltonian.

» What about PDEs?

» What about nonholonomic constraints?

References
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Consistency
Definition

(a) A discrete quantity W(x;j, xj+1) is a consistent discretization
of a continuous quantity f(x, x) if for any smooth curve x

Wp(x(t), x(t + h)) = f(x(t), x(t)) + O(h) for h — 0.

(b) Wp(xj—1,Xj,Xj+1) is a consistent discretization of f(x,x, X) if

Wu(x(t — h),x(t),x(t + h)) = f(x(t), x(t), x(t)) + O(h).

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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Consistency
Proposition

If Lyisc is a consistent discretization of L, then the discrete
Euler-Lagrange equation is a consistent discretization of the
continuous Euler-Lagrange equation,

Do Lgisc(x(t — h), x(t)) + DlLdisc( (t),x(t+ h))

oL . oL
— 5o (050 = 3 (s (K042 ) + O(h)

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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Modified Equations
Definition (First order equations)

Let Wy(x;j, xj4+1) be a consistent discretization of some
g(x(t), x(t)), where det % # 0. The differential equation
x = fp(x), where

fa(x) =~ fo(x) + hA(x) + P H(x) + ...

is a modified equation for the difference equation Wy(x;, xj41) =0
if, for every k, every solution of the truncated differential equation

x = Tk (fa(x))

satisfies Wy(x(t), x(t + h)) = O(h**1) for all t.

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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Modified Equations
Definition (Second order equations)

Let Wy(xj—1,xj,Xj+1) be a consistent discretization of some
g(x(t), x(t), x(t)), where det % # 0. The differential equation
X = fp(x, x), where

fu(x, X) ~ fo(x, X) + hf(x, x) + h*h(x,x) + . ..

is a modified equation for the second order difference equation
Vp(xj—1, %), xj+1) = 0 if, for every k, every solution of the
truncated differential equation

X = Ti (fa(x, %))
satisfies Wy(x(t — h), x(t), x(t + h)) = O(h**+1) for all t.



Potential: U(x) = ——.

1
L jan: £= = (%, %) + —.
agrangian 5 (x,%) + ]
x
X3

Equation of motion X = —

Stormer-Verlet discretization:

Xj+1 = 2% + Xj-1

h2 = _U/(XJ)

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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The modified Lagrangian of the Stormer-Verlet discretization is

1 h?
Emod,3(xa)-<) = 5 <X,X> - U+ ﬂ (U,U/ — 2U”()'(,)'()) .
For the Kepler problem we have U(x) = —ﬁ, hence
1 R (1 (%) ()]
Emo ) X) = (X ) . o0 — | =z =2 6 .
1sbe) = (Rt o <|x|4 O

Up to higher order terms, we can consider this as a perturbation of
the potential:

1 h? E L2
Lumod3(x,X) = (%, %)+ ( 9

T e h
PREATRNEE 6|><|5> O).

where IE and IL are the constant energy and angular momentum of
the unperturbed problem.

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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From Hamiltonian perturbation theory:

Lemma

The precession rate (in radians per period) for the perturbed

Lagrangian
1 1
L==(x. x — + AU
is given in first order approximation by
(AU(x))
2ma® —— 2L
ma T

where a and b are the semimajor and semiminor axes of the orbit
respectively, and (-) denotes the time-average along the
unperturbed orbit.

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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Proposition

The numerical precession rate of the Stormer-Verlet method is

™ 33 a 2 4
(15F - 3y> W + O(h*)

Predicted:
0.0673 rad per
revolution.

Measured:
0.0659 rad per
revolution.

Mats Vermeeren, TU Berlin
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Proposition

The numerical precession rate of the midpoint rule is

Predicted:
—0.134 rad
per revolution.

Measured:
—0.152 rad
per revolution.

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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Let's look at those expressions again

23
Stormer-Verlet: 1 (15 i 3b4) h? 4+ O(h*)
o . a3 2 4
Midpoint rule: — b6 3b4 h*+ O(h")

Proposition

The numerical precession rate of the method with Lagrangian
2 1
L(xj, xj+1) = §L5V(Xj,xj+1) + §LMp(xJ-,xj+1)

is of order O(h*).

Modified Equations for Variational Integrators Mats Vermeeren, TU Berlin
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This is an implicit method, given by

Xj+1 = 2% + Xj-1

LT (Xj—1+Xj> Y <Xj+Xj+1>
B 776 2 '

Other options: compose two
Stormer-Verlet-steps with one
midpoint-step
» Either on the level of second order
difference equations
(-1, %) = (%, Xj41),
> or on the level of a symplectic map
(x5, pj) = (X1, Pj41).
They are not equivalent because the Legendre transformation
depends on the ever-changing Lagrangian.
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This is an implicit method, given by

Xj+1 = 2% + Xj-1

LT (Xj—1+Xj> Y <Xj+Xj+1>
B 776 2 '

Other options: compose two
Stormer-Verlet-steps with one
midpoint-step
> Either on the level of second order
difference equations
(-1, %) = (%, Xj41),
> or on the level of a symplectic map
(x5, pj) = (X1, Pj41).

They are not equivalent because the Legendre transformation
depends on the ever-changing Lagrangian.
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Comparison of precession angles
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