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Contact geometry

(2n + 1)-dimensional manifold M.

Contact structure

A distribution of hyperplanes ξ ⊂ TM that is maximally non-integrable:
a submanifold that is always tangent to the distribution has dimension at
most n.

Locally, such a distribution is
given by the kernel of a 1-form η
satisfying

η ∧ (dη)n 6= 0,

called a contact form.

Multiplying η by a non-vanishing
function does not change the con-
tact structure.

dz − ydx

f : M → M is a contact transformation if f ∗η = gη for some g : M → R.
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Contact geometry

There exist Darboux local coordinates (x1, . . . , xn, p1, . . . , pn, z) such that
the contact 1-form can be written as

η = dz − p dx = dz −
∑
i

pi dxi .

Contact Hamiltonian vector field

LXH
η = fHη and η(XH) = −H,

where L is the Lie derivative and fH : M → R.
(In terms of the Reeb vector field, fH = −Rη(H).)

For comparison with symplectic mechanics, note that

ιXH
(dη) = −d(ιXH

η) + LXη = dH + fHη.

In Darboux coordinates the contact Hamiltonian equations are

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
− p

∂H

∂z
, ż = p

∂H

∂p
− H.
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Damped mechanical systems

Contact Hamiltonian systems satisfy

dH

dt
= −H ∂H

∂z

so dissipation can occur!

Example. A Hamiltonian of the form

H =
1

2
p2 + V (x) + αz

describes a mechanical system with linear damping:
ẋ = p

ṗ = −V ′(x)− αp
ż = p2 − H.

Written as a second order ODE:

ẍ = −V ′(x)− αẋ .

The physical meaning of z will be discussed later.
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Contact geometry in thermodynamics

First law for of thermodynamics can be written as

dU − TdS + PdV − µdN = 0

i.e. states are constrained within a manifold with tangent spaces in the
kernel of

η = dU − TdS + PdV − µdN

Various thermodynamical process can be written as Hamiltonian flows
with respect to the contact structure defined by η.

[Mruga la, Nulton, Schön, Salamon. Contact structure in thermodynamic
theory. Rep. Math. Phys. 1991]

[Bravetti. Contact Hamiltonian dynamics: the concept and its use.
Entropy, 2017]
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Contact geometry in integrable systems

Background: symplectic Hamiltonian vector fields and integrable
(2 + 1)-dimensional PDEs.

Integrable PDEs of “hydrodynamic type” (aka “dispersionless”)

A(u)ux + B(u)uy + D(u)ut = 0

have several kinds of Lax pairs:

I Non-linear: compatibility of

ψy = F (ψx , u) and ψt = G (ψx , u)

I Linear non-isospectral: compatibility of

ψy = Xf ψ and ψt = Xgψ

Where Xf , Xg denote the (symplectic) Hamiltonian vector fields of
f (x , p) and g(x , p) (related to F and G ) and p is a spectral
parameter.
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Contact geometry in integrable systems

This can be generalized to (3 + 1)-dimensional PDEs

A(u)ux + B(u)uy + C (u)uz + D(u)ut = 0.

But then we need Hamiltonian vector field in a 3-dimensional space.

I Non-linear Lax pair: compatibility of

ψy = ψzF (ψx/ψz , u) and ψt = ψzG (ψx/ψz , u)

I Linear non-isospectral Lax pair: compatibility of

ψy = Xf ψ and ψt = Xgψ

Where Xf , Xg denote the contact Hamiltonian vector fields of
f (x , p, z) and g(x , p, z) and p is a spectral parameter.

Hence (3 + 1)-dimensional integrable PDEs can be found by looking for
suitable contact Hamiltonian functions f and g .

[Sergyeyev. New integrable (3 + 1)-dimensional systems and contact
geometry. Letters in Mathematical Physics, 2018.]
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Herglotz’ variational principle

The contact Hamiltonian equation for z is

ż = p
∂H

∂p
− H

?
= L

Herglotz’ variational principle

Lagrangian L : TQ × R→ R.
Given a curve x : [0,T ]→ Q, define z : [0,T ]→ R by z(0) = z0 and

ż(t) = L(x(t), ẋ(t), z(t))

We look for a curve x such that every variation of x that vanishes at the
boundary of [0,T ] leaves the action z(T ) invariant.

If L does not depend on z we find the classical variational principle:

z(T ) =

∫ T

0
L(x(t), ẋ(t))dt.

[Herglotz. Berührungstransformationen Lecture notes, Göttingen, 1930.]
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Herglotz’ variational principle

A variation δx of x induces a variation δz of z :

ż(t) = L(x(t), ẋ(t), z(t)) ⇒ δż =
∂L
∂x

δx +
∂L
∂ẋ

δẋ︸ ︷︷ ︸
A(t)

+
∂L
∂z︸︷︷︸
dB(t)
dt

δz .

The solution of δż(t) = A(t) +
dB(t)

dt
δz(t) is

δz(T ) = eB(T )

[∫ T

0
A(τ)e−B(τ) dτ + δz(0)

]
= eB(T )

[∫ T

0

(
∂L
∂x

δx +
∂L
∂ẋ

δẋ

)
e−B(τ) dτ + δz(0)

]
= eB(T )

[ ∫ T

0

(
∂L
∂x
− d

dt

∂L
∂ẋ

+
∂L
∂z

∂L
∂ẋ

)
δx e−B(τ) dτ

+
∂L
∂ẋ

(T )δx(T ) e−B(T ) − ∂L
∂ẋ

(0)δx(0) + δz(0)

]
.
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Herglotz’ variational principle

δz(T ) = eB(T )

[ ∫ T

0

(
∂L
∂x
− d

dt

∂L
∂ẋ

+
∂L
∂z

∂L
∂ẋ

)
δx e−B(τ) dτ

+
∂L
∂ẋ

(T )δx(T ) e−B(T ) − ∂L
∂ẋ

(0)δx(0) + δz(0)

]
.

Variations satisfy δx(0) = δx(T ) = δz(0) = 0.

Generalized Euler-Lagrange equations

∂L
∂x
− d

dt

∂L
∂ẋ

+
∂L
∂z

∂L
∂ẋ

= 0

If instead we restrict to solution curves, but vary the endpoints, we obtain

δz(T ) =
∂L
∂ẋ

(T )δx(T )− eB(T )

[
∂L
∂ẋ

(0)δx(0) + δz(0)

]
Contact structure

φ∗T (dz − p dx) = eB(T )(dz − p dx)

where p = ∂L
∂ẋ and φT denotes the flow over the time interval [0,T ].
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Discrete Herglotz variational principle

Variational integrator: approximate L(x , ẋ , z) by L(xj , xj+1, zj , zj+1; h),
where h > 0 is the step size.

discrete Herglotz variational principle

Given x = (x0, . . . , xN) ∈ QN+1 we define z = (z0, . . . , zN) ∈ RN+1 by
z0 = 0 and

zj+1 − zj = hL(xj , xj+1, zj , zj+1; h)

Look for a discrete curve x such that

dzj+1

dxj
= 0 ∀j ∈ {1, . . . ,N − 1}.

Then in particular,
dzN
dxj

= 0 for all j ∈ {1, . . . ,N − 1}:

variations of x do not affect the final value of z .
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Discrete Herglotz variational principle

Discrete generalized Euler-Lagrange equation

0 = D2L(xj−1, xj , zj−1, zj) + D1L(xj , xj+1, zj , zj+1)

+
hD2L(xj−1,xj ,zj−1,zj )

1−hD4L(xj−1,xj ,zj−1,zj )
(D3L(xj , xj+1, zj , zj+1) + D4L(xj−1, xj , zj−1, zj)).

where Di is the partial derivative w.r.t. the i-th variable.

If L a consistent discretization of a continuous Lagrangian L,

D2L(xj−1, xj , zj−1, zj) + D1L(xj , xj+1, zj , zj+1) ≈ ∂L
∂x
− d

dt

∂L
∂ẋ

hD2L(xj−1, xj , zj−1, zj)

1− hD4L(xj−1, xj , zj−1, zj)
≈ ∂L
∂ẋ

D3L(xj , xj+1, zj , zj+1) + D4L(xj−1, xj , zj−1, zj) ≈
∂L
∂z
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Contact structure

The discrete generalized Euler-Lagrange equation can be written as

hD2L(xj−1, xj , zj−1, zj)

1− hD4L(xj−1, xj , zj−1, zj)
+

hD1L(xj , xj+1, zj , zj+1)

1 + hD3L(xj , xj+1, zj , zj+1)
= 0

Position-momentum formulation

F : T ∗Q × R 7→ T ∗Q × R : (xj−1, pj−1, zj−1) 7→ (xj , pj , zj),

where pj = p−j = p+j and

p−j =
hD2L(xj−1, xj , zj−1, zj)

1− hD4L(xj−1, xj , zj−1, zj)
,

p+j = −
hD1L(xj , xj+1, zj , zj+1)

1 + hD3L(xj , xj+1, zj , zj+1)
.

The map F is a contact transformation with respect to the 1-form

dz − p dx .
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All contact maps are variational

Theorem

Iterations of any contact transformation

(x0, p0, z0) 7→ (x1, p1, z1)

yield a discrete curve x = (x0, . . . , xN) that solves the discrete Herglotz
variational principle for some discrete Lagrangian L(xj , xj+1, zj).

Proof idea. Like in the symplectic case, every contact transformation has a
generating function, which can be used as a discrete Lagrangian. �

In practice it is beneficial to take L symmetric in zj and zj+1, but from this
Theorem it follows that there is always an equivalent Lagrangian
independent of zj+1.

Mats Vermeeren (TU Berlin) Discretization of contact systems July 23, 2019 13 / 20



Backward error analysis

Solutions of the difference equations
zj+1 − zj

h
= L(xj , xj+1, zj , zj+1; h)

xj+1 − 2xj + xj−1
h2

= F (xj−1, xj , xj+1, zj−1, zj , zj+1; h).

are formally interpolated by solutions of the modified equations{
ż = Lmod(x , ẋ , z , h) = L(x , ẋ , z) + hL1(x , ẋ , z) + h2L2(x , ẋ , z) + . . .

ẍ = fmod(x , ẋ , z ; h) = f (x , ẋ , z) + hf1(x , ẋ , z) + h2f2(x , ẋ , z) + . . .
.

(The power series are usually not convergent. Truncations need to be used
to make rigorous statements.)

The modified equations are also a contact system

In particular, ẍ = fmod(x , ẋ , z ; h) is the generalized Euler-Lagrange
equation of Lmod(x , ẋ , z , h).
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Hamiltonian integrators

In many examples, H(x , p, z) = A(p) + B(x) + Cz . Then

XA = A′(p)∂x + (pA(p)− A(p))∂z

XB = −B ′(x)∂p − B(x)∂z

XCz = −pC∂p − Cz∂z ,

which are all explicitly integrable:

exp(tXA)(x , p, z) = (x + tA′(p), p , z + t(pA(p)− A(p))

exp(tXB)(x , p, z) = (x , p − t(B ′(x) + B(x)), z + t(pA(p)− A(p))

exp(tXC )(x , p, z) = (x , p − tpC , exp(Ct)z )

Splitting integrator

S2(h) = exp

(
h

2
XC

)
exp

(
h

2
XB

)
exp(hXA) exp

(
h

2
XB

)
exp

(
h

2
XC

)
.

As a composition of contact maps, S2(h) is itself a contact map.

Since it is symmetric, S2 is a second order integrator.
Mats Vermeeren (TU Berlin) Discretization of contact systems July 23, 2019 15 / 20



Hamiltonian integrators

Given a second order contact integrator S2, higher order contact
integrators can be obtained recursively by “Yoshida’s trick”:

S2n+2(h) = S2n(αnh)S2n(βnh)S2n(αnh)

where αn = 1

2−2
1

2n+1
and βn = − 2

1
2n+1

2−2
1

2n+1
.

A more complicated but similar construction for S2 applies for
Hamiltonians

H(t, x , p, z) = A(t, p) + B(t, x) + C (t)z

depending explicitly on time.

[Yoshida. Construction of higher order symplectic integrators. Physics
letters A, 1990]
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Numerical example: harmonic oscillator

L = 1
2 ẋ

2 − V (x)− az ⇒ ẍ = −V ′(x)− αẋ

Very small damping: contact integrators comparable to symplectic
integrators
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Numerical example: harmonic oscillator

L = 1
2 ẋ

2 − V (x)− az ⇒ ẍ = −V ′(x)− αẋ

Slightly larger damping: contact integrators better than symplectic
integrators
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Time-depenent example: spin-orbit mechanics

Flexible satellite in a fixed orbit, experiencing torque from gravity.

The torque is a time-dependent linear dissipation:

H =
p2

2
+

Nz(θ, t)

C
+

dC

dt

1

C
z ⇒ θ̈ +

dC

dt

θ̇

C
− Nz(θ, t)

C
= 0.

Example: capture into resonance.

Angular velocity decreasing Poincaré section: angle and angular
velocity at fixed point in the orbit
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Conclusions

I Contact mechanics is less known than symplectic mechanics, but has
significant applications in physics and a similarly rich structure.

Though it’s getting more attention recently...

Number op papers men-
tioning “contact geome-
try” and “Hamiltonian”
1987-2019

I Structure-preserving discretizations for contact systems can be
obtained using many of the same ideas as for symplectic systems.

References:

[V, Bravetti, Seri. Contact variational integrators. arXiv:1902.00436]

[Bravetti, Seri, V, Zadra. Numerical integration in celestial mechanics: a case for
contact geometry. arXiv:1909.02613]
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