How to find a pluri-Lagrangian structure for an integrable hierarchy?

Mats Vermeeren

May 21, 2019

Discretization in
Geometry and Dynamics
SFB Transregio 109

Contents

(1) Introduction: Liouville-Arnold Integrability
(2) Pluri-Lagrangian systems in mechanics
(3) Pluri-Lagrangian systems of PDEs

4 Pluri-Lagrangian systems and variational symmetries
(5) Discrete pluri-Lagrangian systems
(6) Continuum limits

Table of Contents

(1) Introduction: Liouville-Arnold Integrability
(2) Pluri-Lagrangian systems in mechanics
(3) Pluri-Lagrangian systems of PDEs

4 Pluri-Lagrangian systems and variational symmetries
(5) Discrete pluri-Lagrangian systems
(6) Continuum limits

Hamiltonian Systems

Hamilton function

$$
H: \mathbb{R}^{2 N} \cong T^{*} Q \rightarrow \mathbb{R}:(q, p) \mapsto H(q, p)
$$

determines dynamics:

$$
\dot{q}_{i}=\frac{\partial H}{\partial p_{i}} \quad \text { and } \quad \dot{p}_{i}=-\frac{\partial H}{\partial q_{i}}
$$

If $H=\frac{1}{2 m} p^{2}+U(q)$, then we find Newton's laws:

$$
\dot{q}=\frac{1}{m} p \quad \text { and } \quad \dot{p}=-\nabla U(q)
$$

Geometric interpretation:

- Phase space $T^{*} Q$ with canonical symplectic 2-form ω
- flow along vector field X_{H} determined by $\iota X_{H} \omega=\mathrm{d} H$
- the flows consists of symplectic maps and preserves H.

Poisson Brackets

Poisson bracket of two functionals on $T^{*} Q$:

$$
\{f, g\}=\sum_{i=1}^{N}\left(\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}}\right)
$$

Dynamics of a Hamiltonian system:

$$
\dot{q}_{i}=\left\{q_{i}, H\right\}, \quad \dot{p}_{i}=\left\{p_{i}, H\right\}, \quad \frac{\mathrm{d}}{\mathrm{~d} t} f(q, p)=\{f(q, p), H\}
$$

Properties:
anti-symmetry: $\{f, g\}=-\{g, f\}$
bilinearity: $\{f, g+\lambda h\}=\{f, g\}+\lambda\{f, h\}$
Leibniz property: $\{f, g h\}=\{f, g\} h+g\{f, h\}$
Jacobi identity: $\{f,\{g, h\}\}+\{g,\{h, f\}\}+\{h,\{f, g\}\}=0$

Liouville-Arnold integrability

What if $H(p, q)=H(p)$?

$$
\dot{p}_{j}=-\frac{\partial H}{\partial q_{j}}=0 \quad \text { and } \quad \dot{q}_{j}=\frac{\partial H}{\partial p_{j}}=\omega_{j}(p)=\mathrm{const}
$$

Liouville-Arnold integrability

What if $H(p, q)=H(p)$?

$$
\dot{p}_{j}=-\frac{\partial H}{\partial q_{j}}=0 \quad \text { and } \quad \dot{q}_{j}=\frac{\partial H}{\partial p_{j}}=\omega_{j}(p)=\text { const }
$$

A Hamiltonian system with Hamilton function $H: \mathbb{R}^{2 N} \rightarrow \mathbb{R}$ is Liouville-Arnold integrable if there exist N functionally independent Hamilton functions $H=H_{1}, H_{2}, \ldots H_{N}$ such that $\left\{H_{i}, H_{j}\right\}=0$.

- each H_{i} is a conserved quantity for all flows.
- the dynamics is confined to a leaf of the foliation $\left\{H_{i}=\right.$ const $\}$.
- the flows commute.
- There exists a symplectic change of variables $(p, q) \mapsto(\bar{p}, \bar{q})$ such that

$$
H(p, q)=\bar{H}_{i}(\bar{p})
$$

Liouville-Arnold integrable systems evolve linearly in these variables!
(\bar{p}, \bar{q}) are called action-angle variables.

Variational analogue of $\left\{H_{i}, H_{j}\right\}=0$

Integrable systems come in families: finite (for ODEs) or infinite (for PDEs) hierarchies of commuting equations:

$$
\frac{\mathrm{d}}{\mathrm{~d} t_{i}} \frac{\mathrm{~d}}{\mathrm{~d} t_{j}}=\frac{\mathrm{d}}{\mathrm{~d} t_{j}} \frac{\mathrm{~d}}{\mathrm{~d} t_{i}} \quad \text { for time variables } t_{1}, t_{2}, \ldots
$$

On the Hamiltonian side, integrability is characterized by $\left\{H_{i}, H_{j}\right\}=0$. What about the Lagrangian side?

Variational analogue of $\left\{H_{i}, H_{j}\right\}=0$

Integrable systems come in families: finite (for ODEs) or infinite (for PDEs) hierarchies of commuting equations:

$$
\frac{\mathrm{d}}{\mathrm{~d} t_{i}} \frac{\mathrm{~d}}{\mathrm{~d} t_{j}}=\frac{\mathrm{d}}{\mathrm{~d} t_{j}} \frac{\mathrm{~d}}{\mathrm{~d} t_{i}} \quad \text { for time variables } t_{1}, t_{2}, \ldots
$$

On the Hamiltonian side, integrability is characterized by $\left\{H_{i}, H_{j}\right\}=0$.
What about the Lagrangian side?
Pluri-Lagrangian principle $(d=1)$
Combine the Lagrange functions $L_{i}[u]$ into a Lagrangian 1-form

$$
\mathcal{L}[u]=\sum_{i} L_{i}[u] \mathrm{d} t_{i} .
$$

Look for dynamical variables $u\left(t_{1}, \ldots, t_{N}\right)$ such that the action

$$
S_{\Gamma}=\int_{\Gamma} \mathcal{L}[u]
$$

is critical w.r.t. variations of u, simultaneously over every curve Γ in multi-time \mathbb{R}^{N}

Table of Contents

(1) Introduction: Liouville-Arnold Integrability
(2) Pluri-Lagrangian systems in mechanics
(3) Pluri-Lagrangian systems of PDEs

4 Pluri-Lagrangian systems and variational symmetries
(5) Discrete pluri-Lagrangian systems
(6) Continuum limits

Multi-time Euler-Lagrange equations

Consider a Lagrangian one-form $\mathcal{L}=\sum_{i} L_{i}[u] d t_{i}$

Lemma

If the action $\int_{S} \mathcal{L}$ is critical on all stepped curves S in \mathbb{R}^{N}, then it is critical on all smooth curves.

Variations are local, so it is sufficient to look at a general L-shaped curve $S=S_{i} \cup S_{j}$.

Multi-time Euler-Lagrange equations

$$
\begin{aligned}
\delta \int_{S_{i}} L_{i} \mathrm{~d} t_{i} & =\int_{S_{i}} \sum_{l} \frac{\partial L_{i}}{\partial u_{l}} \delta u_{l} \mathrm{~d} t_{i} \\
& =\int_{S_{i}} \sum_{\not \not \nexists t_{i}} \sum_{\alpha=0}^{\infty} \frac{\partial L_{i}}{\partial u_{l t_{i}^{\alpha}}} \delta u_{l_{t_{i}^{\alpha}}} \mathrm{d} t_{i} \\
& =\int_{S_{i}} \sum_{\not \not \nexists t_{i}} \frac{\delta_{i} L_{i}}{\delta u_{l}} \delta u_{l} \mathrm{~d} t_{i}+\left.\sum_{l} \frac{\delta_{i} L_{i}}{\delta u_{t_{i}}} \delta u_{l}\right|_{p},
\end{aligned}
$$

where I denotes a multi-index, and

$$
\frac{\delta_{i} L_{i}}{\delta u_{I}}=\sum_{\alpha=0}^{\infty}(-1)^{\alpha} \frac{\mathrm{d}^{\alpha}}{\mathrm{d} t_{i}^{\alpha}} \frac{\partial L_{i}}{\partial u_{I t_{i}^{\alpha}}^{\alpha}}=\frac{\partial L_{i}}{\partial u_{I}}-\frac{\mathrm{d}}{\mathrm{~d} t_{i}} \frac{\partial L_{i}}{\partial u_{I t_{i}}}+\frac{\mathrm{d}^{2}}{\mathrm{~d} t_{i}^{2}} \frac{\partial L_{i}}{\partial u_{I t_{i}^{2}}}-\ldots
$$

Multi-time Euler-Lagrange equations for curves, $\mathcal{L}=\sum_{i} L_{i}[u] \mathrm{d} t_{i}$

$$
\frac{\delta_{i} L_{i}}{\delta u_{I}}=0 \quad \forall I \not \supset t_{i} \quad \text { and } \quad \frac{\delta_{i} L_{i}}{\delta u_{I t_{i}}}=\frac{\delta_{j} L_{j}}{\delta u_{I t_{j}}} \quad \forall I,
$$

Example: Kepler Problem

The classical Lagrangian of a particle in the gravitational potential

$$
L_{1}[q]=\frac{1}{2}\left|q_{t_{1}}\right|^{2}+\frac{1}{|q|}
$$

can be combined with

$$
L_{2}[q]=q_{t_{1}} \cdot q_{t_{2}}+\left(q_{t_{1}} \times q\right) \cdot e
$$

into a pluri-Lagrangian 1-form $L_{1} \mathrm{~d} t_{1}+L_{2} \mathrm{~d} t_{2}$ and consider $q=q\left(t_{1}, t_{2}\right)$.

Example: Kepler Problem

The classical Lagrangian of a particle in the gravitational potential

$$
L_{1}[q]=\frac{1}{2}\left|q_{t_{1}}\right|^{2}+\frac{1}{|q|}
$$

can be combined with

$$
L_{2}[q]=q_{t_{1}} \cdot q_{t_{2}}+\left(q_{t_{1}} \times q\right) \cdot e
$$

into a pluri-Lagrangian 1-form $L_{1} \mathrm{~d} t_{1}+L_{2} \mathrm{~d} t_{2}$ and consider $q=q\left(t_{1}, t_{2}\right)$.
Multi-time Euler-Lagrange equations:

$$
\begin{array}{rll}
\frac{\delta_{1} L_{1}}{\delta q}=0 & \Rightarrow & q_{t_{1} t_{1}}=-\frac{q}{|q|^{3}} \\
\frac{\delta_{2} L_{2}}{\delta q}=0 & \Rightarrow & \text { (Keplerian } \\
\frac{\delta_{2} L_{2}}{\delta q_{t_{1}}}=0 & \Rightarrow q_{t_{1}} & \\
\frac{\delta_{1} L_{1}}{\delta q_{t_{1}}}=\frac{\delta_{2} L_{2}}{\delta q_{t_{2}}} & \Rightarrow q_{t_{1}}=q_{t_{1}} & \text { (Rotation) }
\end{array}
$$

Table of Contents

(1) Introduction: Liouville-Arnold Integrability
(2) Pluri-Lagrangian systems in mechanics
(3) Pluri-Lagrangian systems of PDEs

4 Pluri-Lagrangian systems and variational symmetries
(5) Discrete pluri-Lagrangian systems
(6) Continuum limits

Pluri-Lagrangian principle ($d=2$, continuous)

Given a 2-form

$$
\mathcal{L}=\sum_{i, j} L_{i j}[u] \mathrm{d} t_{i} \wedge \mathrm{~d} t_{j}
$$

find a field $u: \mathbb{R}^{N} \rightarrow \mathbb{C}$, such that $\int_{\Gamma} \mathcal{L}$ is critical on all smooth 2-surfaces Γ in multi-time \mathbb{R}^{N}, w.r.t. variations of u.

Example: KdV hierarchy, where $t_{1}=x$ is the shared space coordinate, t_{i} time for i-th flow. (Details to follow.)

Multi-time EL equations

Consider a Lagrangian 2-form $\mathcal{L}=\sum_{i, j} L_{i j}[u] \mathrm{d} t_{i} \wedge \mathrm{~d} t_{j}$.
Every smooth surface can be approximated arbitrarily well by stepped surfaces. Hence it is sufficient to require criticality on stepped surfaces, or just on their elementary corners.

Multi-time EL equations

 for $\mathcal{L}=\sum_{i, j} L_{i j}[u] \mathrm{d} t_{i} \wedge \mathrm{~d} t_{j}$$$
\begin{array}{lr}
\frac{\delta_{i j} L_{i j}}{\delta u_{l}}=0 & \forall I \not \nexists t_{i}, t_{j}, \\
\frac{\delta_{i j} L_{i j}}{\delta u_{l_{j}}}=\frac{\delta_{i k} L_{i k}}{\delta u_{l_{k}}} & \forall I \not \nexists t_{i}, \\
\frac{\delta_{j i} L_{i j}}{\delta u_{l_{t i} t_{j}}}+\frac{\delta_{j k} L_{j k}}{\delta u_{l_{t j} t_{k}}}+\frac{\delta_{k i} L_{k i}}{\delta u_{l_{t_{k} t_{i}}}}=0 & \forall I .
\end{array}
$$

Where

$$
\frac{\delta_{i j} L_{i j}}{\delta u_{I}}=\sum_{\alpha=0}^{\infty} \sum_{\beta=0}^{\infty}(-1)^{\alpha+\beta} \frac{\mathrm{d}^{\alpha}}{\mathrm{d} t_{i}^{\alpha}} \frac{\mathrm{d}^{\beta}}{\mathrm{d} t_{j}^{\beta}} \frac{\partial L_{i j}}{\partial u_{I t_{i}^{\alpha} t_{j}^{\beta}}}
$$

Example: Potential KdV hierarchy

$$
\begin{aligned}
& u_{t_{2}}=Q_{2}=u_{x x x}+3 u_{x}^{2} \\
& u_{t_{3}}=Q_{3}=u_{x x x x x}+10 u_{x} u_{x x x}+5 u_{x x}^{2}+10 u_{x}^{3}
\end{aligned}
$$

where we identify $t_{1}=x$.
The differentiated equations $u_{x t_{i}}=\frac{\mathrm{d}}{\mathrm{d} x} Q_{i}$ are Lagrangian with

$$
\begin{aligned}
& L_{12}=\frac{1}{2} u_{x} u_{t_{2}}-\frac{1}{2} u_{x} u_{x x x}-u_{x}^{3} \\
& L_{13}=\frac{1}{2} u_{x} u_{t_{3}}-u_{x} u_{x x x x x}-2 u_{x x} u_{x x x x}-\frac{3}{2} u_{x x x}^{2}+5 u_{x}^{2} u_{x x x}+5 u_{x} u_{x x}^{2}+\frac{5}{2} u_{x}^{4}
\end{aligned}
$$

Example: Potential KdV hierarchy

$$
\begin{aligned}
& u_{t_{2}}=Q_{2}=u_{x x x}+3 u_{x}^{2} \\
& u_{t_{3}}=Q_{3}=u_{x x x x x}+10 u_{x} u_{x x x}+5 u_{x x}^{2}+10 u_{x}^{3}
\end{aligned}
$$

where we identify $t_{1}=x$.
The differentiated equations $u_{x t_{i}}=\frac{\mathrm{d}}{\mathrm{d} x} Q_{i}$ are Lagrangian with

$$
\begin{aligned}
& L_{12}=\frac{1}{2} u_{x} u_{t_{2}}-\frac{1}{2} u_{x} u_{x x x}-u_{x}^{3} \\
& L_{13}=\frac{1}{2} u_{x} u_{t 3}-u_{x} u_{x x x x x}-2 u_{x x} u_{x x x x}-\frac{3}{2} u_{x x x}^{2}+5 u_{x}^{2} u_{x x x}+5 u_{x} u_{x x}^{2}+\frac{5}{2} u_{x}^{4} .
\end{aligned}
$$

A suitable coefficient L_{23} of

$$
\mathcal{L}=L_{12} \mathrm{~d} t_{1} \wedge \mathrm{~d} t_{2}+L_{13} \mathrm{~d} t_{1} \wedge \mathrm{~d} t_{3}+L_{23} \mathrm{~d} t_{2} \wedge \mathrm{~d} t_{3}
$$

can be found (nontrivial task!) in the form

$$
L_{23}=\frac{1}{2}\left(u_{t_{2}} Q_{3}-u_{t_{3}} Q_{2}\right)+p_{23} .
$$

Example: Potential KdV hierarchy

- The equations $\frac{\delta_{12} L_{12}}{\delta u}=0$ and $\frac{\delta_{13} L_{13}}{\delta u}=0$ yield

$$
u_{x t_{2}}=\frac{\mathrm{d}}{\mathrm{~d} x} Q_{2} \quad \text { and } \quad u_{x t_{3}}=\frac{\mathrm{d}}{\mathrm{~d} x} Q_{3}
$$

- The equations $\frac{\delta_{12} L_{12}}{\delta u_{x}}=\frac{\delta_{32} L_{32}}{\delta u_{t_{3}}}$ and $\frac{\delta_{13} L_{13}}{\delta u_{x}}=\frac{\delta_{23} L_{23}}{\delta u_{t_{2}}}$ yield

$$
u_{t_{2}}=Q_{2} \quad \text { and } \quad u_{t_{3}}=Q_{3}
$$

the evolutionary equations!

- All other multi-time EL equations are corollaries of these.

Table of Contents

(1) Introduction: Liouville-Arnold Integrability
(2) Pluri-Lagrangian systems in mechanics
(3) Pluri-Lagrangian systems of PDEs

4 Pluri-Lagrangian systems and variational symmetries
(5) Discrete pluri-Lagrangian systems
(6) Continuum limits

Closedness of the Lagrangian form

One could require additionaly that \mathcal{L} is closed on solutions
\hookrightarrow "Lagrangian multiform systems".
Then the action is not just critical on every curve/surface, but also takes the same value on every curve/surface.

We do not take this as part of the definition, because one can show

Proposition
 $\mathrm{d} \mathcal{L}$ is constant on the set of solutions.

Closedness relates to other notions of integrability
If $\mathrm{d}\left(\sum_{i} L_{i} \mathrm{~d} t_{i}\right)=0$, then $\frac{\mathrm{d} L_{k}}{\mathrm{~d} t_{j}}=\frac{\mathrm{d} L_{j}}{\mathrm{~d} t_{k}}$

Variational symmetries

t_{j}-flow changes L_{k} by a t_{k}-derivative.
\Rightarrow Individual flows are variational symmetries of each other:

If $\mathrm{d}\left(\sum_{i, j} L_{i j} \mathrm{~d} t_{i} \wedge \mathrm{~d} t_{j}\right)=0$, then $\frac{\mathrm{d} L_{i j}}{\mathrm{~d} t_{k}}=\frac{\mathrm{d} L_{i k}}{\mathrm{~d} t_{j}}-\frac{\mathrm{d} L_{j k}}{\mathrm{~d} t_{i}}$

Variational symmetries

t_{k}-flow changes $L_{i j}$ by a divergence in $\left(t_{i}, t_{j}\right)$.
\Rightarrow Individual flows are variational symmetries of each other.
Idea: use variational symmetries to construct a pluri-Lagrangian structure

Variational Symmetries and pluri-Lagrangian structures

1-forms [Petrera, Suris. 2017]
Given a mechanical Lagrangian L_{1} and a number of variational symmetries, we can construct coefficents L_{i} such that the pluri-Lagrangian 1-form

$$
\sum_{i} L_{i} \mathrm{~d} t_{i}
$$

describes the mechanical system coupled with its variational symmetries.
A similar result holds for Lagrangian 2-forms [Petrera, V. In preparation]. Given Lagrangians $L_{1 j}$ corresponding to the individual PDEs of a hierarchy, such that each PDE is a variational symmetry for the other Lagrangians, we can find also $L_{i j}$ with $i, j>1$ such that

$$
\sum_{i, j} L_{i j} \mathrm{~d} t_{i} \wedge \mathrm{~d} t_{j} .
$$

is a pluri-Lagrangian structure for the hierarchy.

Preliminaries

We think of the field $u\left(t_{1}, t_{2}\right)$ as a section of the bundle $\mathbb{R}^{2}\left(t_{1}, t_{2}\right) \times \mathbb{R}(u)$. The derivatives of u live in the infinite jet bundle $\mathbb{R}^{2}\left(t_{1}, t_{2}\right) \times \mathcal{J}^{\infty}\left(u, u_{t_{1}}, u_{t_{2}}, u_{t_{1} t_{1}}, u_{t_{1} t_{2}}, u_{t_{2} t_{2}}, \ldots\right)$.

- A vertical generalized vector field on $\mathbb{R}^{2}\left(t_{1}, t_{2}\right) \times \mathbb{R}(u)$ is a vector field of the form $Q \partial_{u}$, where Q depends on u and its derivatives.
- The prolongation of $Q \partial_{u}$ is a vector field on the infinite jet \mathcal{J}^{∞} defined as

$$
\operatorname{pr}\left(Q \partial_{u}\right)=\sum_{I \in \mathbb{N}^{2}}\left(\mathrm{D}_{l} Q\right) \frac{\partial}{\partial u_{l}}
$$

(Motivation: describe the action of $Q \partial_{u}$ on a function of the jet \mathcal{J}^{∞}.)

Preliminaries

- $Q \partial_{u}$ is a variational symmetry of $L: \mathcal{J}^{\infty} \rightarrow \mathbb{R}$ if its prolongation satisfies

$$
\operatorname{pr}\left(Q \partial_{u}\right) L=\mathrm{D}_{1} F_{1}+\mathrm{D}_{2} F_{2}
$$

for some $F_{1}, F_{2}: \mathcal{J}^{\infty} \rightarrow \mathbb{R}$, where D_{i} is the total derivative w.r.t. t_{i}.

- A conservation law for $L: \mathcal{J}^{\infty} \rightarrow \mathbb{R}$ is a triple $J_{1}, J_{2}, Q: \mathcal{J}^{\infty} \rightarrow \mathbb{R}$ that satisfy

$$
\mathrm{D}_{1} J_{1}+\mathrm{D}_{2} J_{2}=-Q \frac{\delta L}{\delta u}
$$

$J=\left(J_{1}, J_{2}\right)$ is called the conserved current Q is called the characteristic of the conservation law.

On solutions: $\operatorname{div} J=0$.

Noether's theorem for 2-dimensional PDEs

Theorem

Let $Q \partial_{u}$ be a variational symmetry of L, i.e. $\operatorname{pr}\left(Q \partial_{u}\right) L=D_{1} F_{1}+D_{2} F_{2}$. Then

$$
\begin{aligned}
& J_{1}=\sum_{l \ngtr t_{2}}\left((\mathrm{D}, Q) \frac{\delta L}{\delta u_{t_{1}}}\right)+\frac{1}{2} \sum_{l} \mathrm{D}_{2}\left((\mathrm{D}, Q) \frac{\delta L}{\delta u_{t_{1} t_{2}}}\right)-F_{1}, \\
& J_{2}=\sum_{l \ngtr t_{1}}\left((\mathrm{D}, Q) \frac{\delta L}{\delta u_{l_{2}}}\right)+\frac{1}{2} \sum_{l} \mathrm{D}_{1}\left((\mathrm{D}, Q) \frac{\delta L}{\delta u_{t_{1} t_{2}}}\right)-F_{2}
\end{aligned}
$$

are the components of the conserved current of a conservation law.
Proof. Integration by parts of $\operatorname{pr}\left(Q \partial_{u}\right) L=\sum_{l}\left(D_{l} Q\right) \frac{\partial L}{\partial u_{l}}$ to get

$$
\operatorname{pr}\left(Q \partial_{u}\right) L=Q \frac{\delta L}{\delta u}+\mathrm{D}_{1}(\cdots)+\mathrm{D}_{2}(\cdots)
$$

hence

$$
-Q \frac{\delta L}{\delta u}=\mathrm{D}_{1}\left(\cdots-F_{1}\right)+\mathrm{D}_{2}\left(\cdots-F_{1}\right) .
$$

From variational symmetries to a pluri-Lagrangian 2-form
Consider a hierarchy of PDEs

$$
u_{i}=Q_{i}\left(u_{1}, u_{11}, \ldots\right) \quad i=2, \ldots, N
$$

with their Lagrangians

$$
L_{1 i}=p\left(u, u_{1}, u_{11}, \ldots\right) u_{i}-h\left(u, u_{1}, u_{11}, \ldots\right)
$$

Assume that the prolonged vector fields $\operatorname{pr}\left(Q_{i} \partial_{u}\right)$, commute and are variational symmetries of the $L_{1 j}$:

$$
\operatorname{pr}\left(Q_{i} \partial_{u}\right) L_{1 j}=\mathrm{D}_{1} A_{i j}+\mathrm{D}_{j} B_{i j}
$$

Lemma

There exist $F_{i j}$ such that

$$
\mathrm{D}_{1} F_{i j}=\mathrm{D}_{i} L_{1 j}-\mathrm{D}_{j} L_{1 i}
$$

on solutions of the hierarchy
Sketch of proof. Show that $\int_{-\infty}^{\infty} \mathrm{D}_{i} L_{1 j}-\mathrm{D}_{j} L_{1 i} \mathrm{~d} t_{1}=0$.

From variational symmetries to a pluri-Lagrangian 2-form

Lemma

There exist $F_{i j}$ such that $\mathrm{D}_{1} F_{i j}=\mathrm{D}_{i} L_{1 j}-\mathrm{D}_{j} L_{1 i}$ on solutions of the hierarchy

Theorem
For $i, j>1$, let

$$
\begin{aligned}
L_{i j}[u]= & \sum_{\alpha \geq 0} \frac{\delta_{1 j} L_{1 j}}{\delta u_{t_{1}^{\alpha+1}}^{\alpha}} \mathrm{D}_{1}^{\alpha}\left(u_{i}-Q_{i}\right)-\sum_{\alpha \geq 0} \frac{\delta_{1 i} L_{1 i}}{\delta u_{t_{1}^{\alpha+1}}} \mathrm{D}_{1}^{\alpha}\left(u_{j}-Q_{j}\right) \\
& +F_{i j}\left(u, u_{1}, u_{11}, \ldots\right)
\end{aligned}
$$

Then every solution of the hierarchy

$$
u_{i}=Q_{i}\left(u_{1}, u_{11}, \ldots\right) \quad i=2, \ldots, N
$$

is a critical point of

$$
\mathcal{L}[u]=\sum_{i<j} L_{i j}[u] \mathrm{d} t_{i} \wedge \mathrm{~d} t_{j} .
$$

From variational symmetries to a pluri-Lagrangian 2-form

Theorem

$$
\begin{aligned}
L_{i j}[u]= & \sum_{\alpha \geq 0} \frac{\delta_{1 j} L_{1 j}}{\delta u_{t_{1}^{\alpha+1}}} \mathrm{D}_{1}^{\alpha}\left(u_{i}-Q_{i}\right)-\sum_{\alpha \geq 0} \frac{\delta_{1 i} L_{1 i}}{\delta u_{t_{1}^{\alpha+1}}} \mathrm{D}_{1}^{\alpha}\left(u_{j}-Q_{j}\right) \\
& +F_{i j}\left(u, u_{1}, u_{11}, \ldots\right)
\end{aligned}
$$

Sketch of proof. Show that $\mathrm{d} \mathcal{L}$ attains a double zero on solutions of the hierarchy.
Then, on solutions:

$$
\mathrm{d}\left(\mathfrak{D}_{\operatorname{pr}\left(v \partial_{u}\right)} \mathcal{L}\right)=\mathfrak{D}_{\operatorname{pr}\left(v \partial_{u}\right)} \mathrm{d} \mathcal{L}=0,
$$

where \mathfrak{D} is the Lie derivative. Hence locally there exists a 1 -form Θ such that

$$
\mathfrak{D}_{\operatorname{pr}\left(v \partial_{u}\right)} \mathcal{L}=\mathrm{d} \Theta
$$

so for variations $v \partial_{u}$ that vanish on $\partial \Gamma$ we find

$$
\int_{\Gamma} \mathfrak{D}_{\operatorname{pr}\left(v \partial_{u}\right)} \mathcal{L}=0
$$

Example: Potential KdV hierarchy

$$
\begin{aligned}
& u_{2}=Q_{2}=3 u_{1}^{2}+u_{111} \\
& u_{3}=Q_{3}=10 u_{1}^{3}+5 u_{11}^{2}+10 u_{1} u_{111}+u_{11111}
\end{aligned}
$$

The corresponding Lagrangians are

$$
\begin{aligned}
& L_{12}=\frac{1}{2} u_{1} u_{2}-u_{1}^{3}-\frac{1}{2} u_{1} u_{111}, \\
& L_{13}=\frac{1}{2} u_{1} u_{3}-\frac{5}{2} u_{1}^{4}+5 u_{1} u_{11}^{2}-\frac{1}{2} u_{111}^{2},
\end{aligned}
$$

On solutions of the evolutionary equations, there holds

$$
\begin{aligned}
\mathrm{D}_{2} L_{13}-\mathrm{D}_{3} L_{12}= & -10 u_{1}^{3} u_{12}+10 u_{1} u_{11} u_{112}+5 u_{11}^{2} u_{12}+3 u_{1}^{2} u_{13} \\
& -u u_{111} u_{1112}+\frac{1}{2} u_{1} u_{1113}+\frac{1}{2} u_{111} u_{13}-\frac{1}{2} u_{13} u_{2}+\frac{1}{2} u_{12} u_{3} \\
= & 15 u_{1}^{4} u_{11}+135 u_{1} u_{11}^{3}+210 u_{1}^{2} u_{11} u_{111}+25 u_{1}^{3} u_{1111} \\
& -18 u_{11} u_{111}^{2}+\frac{15}{2} u_{11}^{2} u_{1111}+34 u_{1} u_{111} u_{1111} \\
& +33 u_{1} u_{11} u_{11111}+\frac{13}{2} u_{1}^{2} u_{111111}+\frac{1}{2} u_{1111} u_{11111} \\
& -u_{111} u_{111111}+\frac{1}{2} u_{1} u_{11111111} .
\end{aligned}
$$

Example: Potential KdV hierarchy

Integrating

$$
\begin{aligned}
\mathrm{D}_{2} L_{13}-\mathrm{D}_{3} L_{12}= & 15 u_{1}^{4} u_{11}+135 u_{1} u_{11}^{3}+210 u_{1}^{2} u_{11} u_{111}+25 u_{1}^{3} u_{1111} \\
& -18 u_{11} u_{111}^{2}+\frac{15}{2} u_{11}^{2} u_{1111}+34 u_{1} u_{111} u_{1111} \\
& +33 u_{1} u_{11} u_{11111}+\frac{13}{2} u_{1}^{2} u_{111111}+\frac{1}{2} u_{1111} u_{11111} \\
& -u_{111} u_{111111}+\frac{1}{2} u_{1} u_{11111111}
\end{aligned}
$$

gives

$$
\begin{aligned}
F_{23}= & 3 u_{1}^{5}+\frac{135}{2} u_{1}^{2} u_{11}^{2}+25 u_{1}^{3} u_{111}-\frac{25}{2} u_{11}^{2} u_{111}+7 u_{1} u_{111}^{2}+20 u_{1} u_{11} u_{1111} \\
& +\frac{13}{2} u_{1}^{2} u_{11111}+\frac{1}{2} u_{1111}^{2}-\frac{1}{2} u_{111} u_{11111}-\frac{1}{2} u_{11} u_{111111}+\frac{1}{2} u_{1} u_{1111111} .
\end{aligned}
$$

Now we can calculate the coefficient L_{23} as

$$
L_{23}=\sum_{\alpha \geq 0} \frac{\delta_{13} L_{13}}{\delta u_{t_{1}^{\alpha+1}}} \mathrm{D}_{1}^{\alpha}\left(u_{2}-Q_{2}\right)-\sum_{\alpha \geq 0} \frac{\delta_{12} L_{12}}{\delta u_{t_{1}^{\alpha+1}}} \mathrm{D}_{1}^{\alpha}\left(u_{3}-Q_{3}\right)+F_{23}
$$

Example: Potential KdV hierarchy

The first two equations of the potential KdV hierarchy have a pluri-Lagrangian structure

$$
\mathcal{L}=L_{12} \mathrm{~d} t_{1} \wedge \mathrm{~d} t_{2}+L_{13} \mathrm{~d} t_{1} \wedge \mathrm{~d} t_{3}+L_{23} \mathrm{~d} t_{2} \wedge \mathrm{~d} t_{3}
$$

with

$$
\begin{aligned}
L_{12}= & \frac{1}{2} u_{1} u_{2}-u_{1}^{3}-\frac{1}{2} u_{1} u_{111}, \\
L_{13}= & \frac{1}{2} u_{1} u_{3}-\frac{5}{2} u_{1}^{4}+5 u_{1} u_{11}^{2}-\frac{1}{2} u_{111}^{2}, \\
L_{23}= & 3 u_{1}^{5}-\frac{15}{2} u_{1}^{2} u_{11}^{2}+10 u_{1}^{3} u_{111}-5 u_{1}^{3} u_{2}+\frac{7}{2} u_{11}^{2} u_{111}+3 u_{1} u_{111}^{2} \\
& -6 u_{1} u_{11} u_{1111}+\frac{3}{2} u_{1}^{2} u_{11111}+10 u_{1} u_{11} u_{12}-\frac{5}{2} u_{11}^{2} u_{2}-5 u_{1} u_{111} u_{2} \\
& +\frac{3}{2} u_{1}^{2} u_{3}-\frac{1}{2} u_{1111}^{2}+\frac{1}{2} u_{111} u_{11111}-u_{111} u_{112}+\frac{1}{2} u_{1} u_{113} \\
& +u_{1111} u_{12}-\frac{1}{2} u_{11} u_{13}-\frac{1}{2} u_{11111} u_{2}+\frac{1}{2} u_{111} u_{3} .
\end{aligned}
$$

For any n we can construct a Lagrangian 2-form in n dimensions, describing $n-1$ equations of the hierarchy.

Further examples

Nonlinear Schrödinger hierarchy

$$
\begin{array}{ll}
u_{2}=Q_{2}=i u_{11}-2 i|u|^{2} u, & \bar{u}_{2}=\bar{Q}_{2}=-i \bar{u}_{11}+2 i|\bar{u}|^{2} \bar{u}, \\
u_{3}=Q_{2}=u_{111}-6|u|^{2} u_{1}, & \bar{u}_{3}=\bar{Q}_{3}=\bar{u}_{111}-6|\bar{u}|^{2} \bar{u}_{1}
\end{array}
$$

with Lagrangians

$$
\begin{aligned}
& L_{12}[u]=\frac{i}{2}\left(u_{2} \bar{u}-u \bar{u}_{2}\right)-\left|u_{1}\right|^{2}-|u|^{4}, \\
& L_{13}[u]=\frac{i}{2}\left(u_{3} \bar{u}-u \bar{u}_{3}\right)+\frac{i}{2}\left(u_{11} \bar{u}_{1}-u_{1} \bar{u}_{11}\right)+\frac{3 i}{2}|u|^{2}\left(u_{1} \bar{u}-u \bar{u}_{1}\right)
\end{aligned}
$$

Slight generalization needed to deal with 2-component Lagrangians:

$$
\begin{aligned}
L_{23}= & \sum_{\alpha \geq 0} \frac{\delta_{13} L_{13}}{\delta u_{t_{1}^{\alpha+1}}} \mathrm{D}_{1}^{\alpha}\left(u_{2}-Q_{2}\right)-\sum_{\alpha \geq 0} \frac{\delta_{12} L_{12}}{\delta u_{t_{1}^{\alpha+1}}} \mathrm{D}_{1}^{\alpha}\left(u_{3}-Q_{3}\right) \\
& +\sum_{\alpha \geq 0} \frac{\delta_{13} L_{13}}{\delta \bar{u}_{t_{1}^{\alpha+1}}} \mathrm{D}_{1}^{\alpha}\left(\bar{u}_{2}-\bar{Q}_{2}\right)-\sum_{\alpha \geq 0} \frac{\delta_{12} L_{12}}{\delta \bar{u}_{t_{1}^{\alpha+1}}} \mathrm{D}_{1}^{\alpha}\left(\bar{u}_{3}-\bar{Q}_{3}\right)+F_{23}
\end{aligned}
$$

Further examples

Sine-Gordon and the potential modified KdV hierarchy

$$
u_{12}=\sin u
$$

$$
u_{3}=Q_{3}=u_{111}+\frac{1}{2} u_{1}^{3},
$$

. .
with Lagrangians

$$
\begin{aligned}
L_{12}[u] & =\frac{1}{2} u_{1} u_{2}-\cos u \\
L_{13}[u] & =\frac{1}{2} u_{1} u_{3}-\frac{1}{8} u_{1}^{4}+\frac{1}{2} u_{11}^{2},
\end{aligned}
$$

Further examples

Sine-Gordon and the potential modified KdV hierarchy

$$
\begin{aligned}
u_{12} & =\mathrm{D}_{1} Q_{2}=\sin u \\
u_{3} & =Q_{3}=u_{111}+\frac{1}{2} u_{1}^{3},
\end{aligned}
$$

. . .
with Lagrangians

$$
\begin{aligned}
& L_{12}[u]=\frac{1}{2} u_{1} u_{2}-\cos u, \\
& L_{13}[u]=\frac{1}{2} u_{1} u_{3}-\frac{1}{8} u_{1}^{4}+\frac{1}{2} u_{11}^{2},
\end{aligned}
$$

Slight generalization needed because Sine-Gordon is not evolutionary:

$$
L_{23}=\sum_{\alpha \geq 1} \frac{\delta_{13} L_{13}}{\delta u_{t_{1}^{\alpha+1}}^{\alpha}} D_{1}^{\alpha}\left(u_{2}-Q_{2}\right)-\sum_{\alpha \geq 0} \frac{\delta_{12} L_{12}}{\delta u_{t_{1}^{\alpha+1}}^{\alpha}} D_{1}^{\alpha}\left(u_{3}-Q_{3}\right)+F_{23}
$$

Table of Contents

(1) Introduction: Liouville-Arnold Integrability
(2) Pluri-Lagrangian systems in mechanics
(3) Pluri-Lagrangian systems of PDEs

4 Pluri-Lagrangian systems and variational symmetries
(5) Discrete pluri-Lagrangian systems
(6) Continuum limits

Quad equations

$$
\mathcal{Q}\left(U, U_{1}, U_{2}, U_{12}, \lambda_{1}, \lambda_{2}\right)=0
$$

Subscripts of U denote lattice shifts, λ_{1}, λ_{2} are parameters.
Invariant under symmetries of the square, affine in each of U, U_{1}, U_{2}, U_{12}.

Integrability for systems quad equations: Multi-dimensional consistency of

$$
\mathcal{Q}\left(U, U_{i}, U_{j}, U_{i j}, \lambda_{i}, \lambda_{j}\right)=0
$$

i.e. the thrunderee ways of calculating U_{123} give the same result.

Classification (under some extra assumptions) by Adler, Bobenko and Suris (ABS List).
Example: lattice potential KdV :

$$
\left(U-U_{12}\right)\left(U_{1}-U_{2}\right)-\lambda_{1}+\lambda_{2}=0
$$

Quad equations

$$
\mathcal{Q}\left(U, U_{1}, U_{2}, U_{12}, \lambda_{1}, \lambda_{2}\right)=0
$$

Subscripts of U denote lattice shifts, λ_{1}, λ_{2} are parameters.
Invariant under symmetries of the square, affine in each of U, U_{1}, U_{2}, U_{12}.

Integrability for systems quad equations: Multi-dimensional consistency of

$$
\mathcal{Q}\left(U, U_{i}, U_{j}, U_{i j}, \lambda_{i}, \lambda_{j}\right)=0
$$

i.e. the thrunderee ways of calculating U_{123} give the same result.

Classification (under some extra assumptions) by Adler, Bobenko and Suris (ABS List).
Example: lattice potential KdV :

$$
\left(U-U_{12}\right)\left(U_{1}-U_{2}\right)-\lambda_{1}+\lambda_{2}=0
$$

Quad equations

$$
\mathcal{Q}\left(U, U_{1}, U_{2}, U_{12}, \lambda_{1}, \lambda_{2}\right)=0
$$

Subscripts of U denote lattice shifts, λ_{1}, λ_{2} are parameters.
Invariant under symmetries of the square, affine in each of U, U_{1}, U_{2}, U_{12}.

Integrability for systems quad equations: Multi-dimensional consistency of

$$
\mathcal{Q}\left(U, U_{i}, U_{j}, U_{i j}, \lambda_{i}, \lambda_{j}\right)=0
$$

i.e. the thrunderee ways of calculating U_{123} give the same result.

Classification (under some extra assumptions) by Adler, Bobenko and Suris (ABS List).
Example: lattice potential KdV :

$$
\left(U-U_{12}\right)\left(U_{1}-U_{2}\right)-\lambda_{1}+\lambda_{2}=0
$$

Pluri-Lagrangian structure for quad equations

For some discrete 2-form

$$
\mathcal{L}\left(\square_{i j}\right)=\mathcal{L}\left(U, U_{i}, U_{j}, U_{i j}, \lambda_{i}, \lambda_{j}\right)
$$

the action $\sum_{\square \in \Gamma} \mathcal{L}(\square)$ is critical on all 2-surfaces Γ in \mathbb{N}^{N} simultaneously.

To derive Euler-Lagrange equations: vary U at each point individually. \hookrightarrow It is sufficient to consider corners of an elementary cube.
[Lobb, Nijhoff. 2009]

Table of Contents

(1) Introduction: Liouville-Arnold Integrability
(2) Pluri-Lagrangian systems in mechanics
(3) Pluri-Lagrangian systems of PDEs

4 Pluri-Lagrangian systems and variational symmetries
(5) Discrete pluri-Lagrangian systems
6) Continuum limits

Miwa shifts

Naive continuum limits of quad equations do not lead to integrable PDEs.
Continuum limit of an integrable difference equation
Skew embedding of the mesh \mathbb{Z}^{N} into multi-time \mathbb{R}^{N}
Discrete Q is a sampling of the continuous q :

$$
\begin{aligned}
& Q=Q(\mathbf{n})=q\left(t_{1}, t_{2}, \ldots, t_{N}\right) \\
& Q_{i}=Q\left(\mathbf{n}+\mathfrak{e}_{i}\right)=q\left(t_{1}-2 \lambda_{i}, t_{2}+2 \frac{\lambda_{i}^{2}}{2}, \ldots, t_{N}+2(-1)^{N} \frac{\lambda_{i}^{N}}{N}\right)
\end{aligned}
$$

[Miwa. On Hirota's difference equations. Proceedings of the Japan Academy A. 1982]
Write quad equation in terms of q and expand in λ_{1}.

Continuum limit of H 1 (lattice potential KdV)

$$
\left(\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+U_{1,2}-U\right)\left(\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{1}}+U_{2}-U_{1}\right)=\frac{1}{\lambda_{2}^{2}}-\frac{1}{\lambda_{1}^{2}} \quad(\text { IpKdV })
$$

This is a well-chosen representative of H 1 out of many equivalent forms.
Often one finds it written as $\left(X-X_{12}\right)\left(X_{2}-X_{1}\right)=\alpha_{1}-\alpha_{2}$

Miwa shifts

$$
\begin{aligned}
& U=U(\mathbf{n})=u\left(t_{1}, t_{2}, \ldots, t_{n}\right) \\
& U_{i}=U\left(\mathbf{n}+\mathfrak{e}_{i}\right)=u\left(t_{1}-2 \lambda_{i}, t_{2}+2 \frac{\lambda_{i}^{2}}{2}, \ldots, t_{n}+2(-1)^{n} \frac{\lambda_{i}^{N}}{N}\right)
\end{aligned}
$$

Plug into (lpKdV) and expand in λ_{1}, λ_{2}.
In leading order everything cancels due to very specific form of quad eqn.
Generically we would have an ODE in t_{1}, e.g.

$$
\begin{aligned}
\left(X-X_{12}\right)\left(X_{2}-X_{1}\right)=\lambda_{1}^{2}-\lambda_{2}^{2} & \Rightarrow 4\left(\lambda_{1}+\lambda_{2}\right) x_{t_{1}}\left(\lambda_{1}-\lambda_{2}\right) x_{t_{1}}=\lambda_{1}^{2}-\lambda_{2}^{2} \\
& \Rightarrow x_{t_{1}}^{2}=\frac{1}{4}
\end{aligned}
$$

Continuum limit of H 1 (lattice potential KdV)

Series expansion

$$
\text { Quad Equation } \rightarrow \sum_{i, j} \frac{4}{i j} f_{i, j}[u] \lambda_{1}^{i} \lambda_{2}^{j}=0,
$$

where $f_{j, i}=-f_{i, j}$ and the factor $\frac{4}{i j}$ is chosen to normalize the $f_{0, j}$.
First row of coefficients:

$$
\begin{aligned}
f_{0,1} & =-u_{t_{2}}, \\
f_{0,2} & =-3 u_{t_{1}}^{2}-u_{t_{1} t_{1} t_{1}}-\frac{3}{2} u_{t_{1} t_{2}}+u_{t_{3}}, \\
f_{0,3} & =8 u_{t_{1}} u_{t_{1} t_{1}}+4 u_{t_{1}} u_{t_{2}}+\frac{4}{3} u_{t_{1} t_{1} t_{1} t_{1}}-\frac{4}{3} u_{t_{1} t_{3}}-u_{t_{2} t_{2}}-u_{t_{4}}, \\
f_{0,4} & =-5 u_{t_{1} t_{1}}^{2}-\frac{20}{3} u_{t_{1}} u_{t_{1} t_{1} t_{1}}+10 u_{t_{1}} u_{t_{1} t_{2}}+5 u_{t_{1} t_{1}} u_{t_{2}}-\frac{5}{4} u_{t_{2}}^{2}-\frac{10}{3} u_{t_{1}} u_{t_{3}} \\
& \quad-u_{t_{1} t_{1} t_{1} t_{1} t_{1}}+\frac{5}{3} u_{t_{1} t_{1} t_{1} t_{2}}+\frac{5}{4} u_{t_{1} t_{2} t_{2}}-\frac{5}{4} u_{t_{1} t_{4}}-\frac{5}{3} u_{t_{2} t_{3}}+u_{t_{5}},
\end{aligned}
$$

Continuum limit of H 1 (lattice potential KdV)

Setting each $f_{i j}$ equal to zero, we find

$$
\begin{aligned}
& u_{t_{2}}=0 \\
& u_{t_{3}}=3 u_{t_{1}}^{2}+u_{t_{1} t_{1} t_{1}} \\
& u_{t_{4}}=0 \\
& u_{t_{5}}=10 u_{t_{1}}^{3}+5 u_{t_{1} t_{1}}^{2}+10 u_{t_{1}} u_{t_{1} t_{1} t_{1}}+u_{t_{1} t_{1} t_{1} t_{1} t_{1}}
\end{aligned}
$$

\hookrightarrow pKdV hierarchy
Whole hierarchy from single quad equation using Miwa correspondence

$$
\begin{aligned}
& U=U(\mathbf{n})=u\left(t_{1}, t_{2}, \ldots, t_{n}\right) \\
& U_{i}=U\left(\mathbf{n}+\mathfrak{e}_{i}\right)=u\left(t_{1}-2 \lambda_{i}, t_{2}+2 \frac{\lambda_{i}^{2}}{2}, \ldots, t_{n}+2(-1)^{n} \frac{\lambda_{i}^{N}}{N}\right)
\end{aligned}
$$

Continuum limit of the Lagrangian

- Using Miwa correspondence:

Discrete $L \quad \rightarrow \quad$ Power series $\mathcal{L}_{\text {disc }}[u(\mathbf{t})]$

Action for $\mathcal{L}_{\text {disc }}[u(\mathbf{t})]$ is still a sum.

- Two applications of the Euler-Maclaurin formula:

$$
\mathcal{L}_{\text {Miwa }}\left([u], \lambda_{1}, \lambda_{2}\right)=\sum_{i, j=0}^{\infty} \frac{B_{i} B_{j}}{i!j!} \partial_{1}^{i} \partial_{2}^{j} \mathcal{L}_{\mathrm{disc}}\left([u], \lambda_{1}, \lambda_{2}\right)
$$

where the differential operators are $\partial_{k}=\sum_{j=1}^{N}(-1)^{j+1} \frac{2 \lambda_{k}^{j}}{j} \frac{d}{d t_{j}}$

- Then there holds $L_{\text {disc }}(\square)=\int \mathcal{L}_{\text {Miwa }}\left([u(\mathbf{t})], \lambda_{1}, \lambda_{2}\right) \eta_{1} \wedge \eta_{2}$, where η_{1} and η_{2} are the 1 -forms dual to the Miwa shifts. This suggests the Lagrangian 2-form

$$
\sum_{1 \leq i<j \leq N} \mathcal{L}_{\mathrm{Miwa}}\left([u], \lambda_{i}, \lambda_{j}\right) \eta_{i} \wedge \eta_{j}
$$

Continuum limit of a Lagrangian 2-form

$L\left(U, U_{1}, U_{2}, U_{12}, \lambda_{1}, \lambda_{2}\right) \quad$ Suitable choice \Rightarrow leading order cancellation
Miwa shifts, Taylor expansion
$\mathcal{L}_{\text {disc }}\left([u], \lambda_{1}, \lambda_{2}\right)$
Euler-Maclaurin formula

$$
\begin{aligned}
\mathcal{L}_{\text {Miwa }}\left([u], \lambda_{1}, \lambda_{2}\right) & =\sum_{i, j=1}^{\infty}(-1)^{i+j} 4 \frac{\lambda_{1}^{i}}{i} \frac{\lambda_{2}^{j}}{j} \mathcal{L}_{i, j}[u] \\
\downarrow & \\
\sum_{1 \leq i<j \leq N} \mathcal{L}_{\text {Miwa }}\left([u], \lambda_{i}, \lambda_{j}\right) \eta_{i} \wedge \eta_{j} & =\sum_{1 \leq i<j \leq N} \mathcal{L}_{i, j}[u] \mathrm{d} t_{i} \wedge \mathrm{~d} t_{j}
\end{aligned}
$$

Continuum limit of the Lagrangian for H1

Lagrangian for (IpKdV)

$$
\begin{gathered}
L(\square)=\frac{1}{2}\left(U-U_{i, j}-\lambda_{i}^{-1}-\lambda_{j}^{-1}\right)\left(U_{i}-U_{j}+\lambda_{i}^{-1}-\lambda_{j}^{-1}\right) \\
+\left(\lambda_{i}^{-2}-\lambda_{j}^{-2}\right) \log \left(1+\frac{U_{i}-U_{j}}{\lambda_{i}^{-1}-\lambda_{j}^{-1}}\right) .
\end{gathered}
$$

A well-chosen representative among many equivalent Lagrangians.
Continuum limit procedure:

- Miwa correspondence:

$$
\begin{aligned}
& U=U(\mathbf{n})=u\left(t_{1}, t_{2}, \ldots, t_{n}\right) \\
& U_{i}=U\left(\mathbf{n}+\mathfrak{e}_{i}\right)=u\left(t_{1}-2 \lambda_{i}, t_{2}+2 \frac{\lambda_{i}^{2}}{2}, \ldots, t_{n}+2(-1)^{n} \frac{\lambda_{i}^{N}}{N}\right)
\end{aligned}
$$

- Series expansion
- Euler-Maclaurin formula

Coefficients (after some post-limit simplifications)

$$
\begin{aligned}
\mathcal{L}_{1,2} & \frac{1}{2} u_{1} u_{2} \quad \mathcal{L}_{1,3}=-u_{1}^{3}+\frac{1}{2} u_{11}^{2}+\frac{1}{2} u_{1} u_{3} \\
\mathcal{L}_{1,4}= & \frac{1}{2} u_{1} u_{4} \quad \mathcal{L}_{1,5}=-\frac{5}{2} u_{1}^{4}+5 u_{1} u_{11}^{2}-\frac{1}{2} u_{111}^{2}+\frac{1}{2} u_{1} u_{5} \\
\mathcal{L}_{2,3}= & -3 u_{1}^{2} u_{2}+u_{11} u_{12}-u_{111} u_{2}+\frac{1}{2} u_{2} u_{3} \\
\mathcal{L}_{2,4}= & \frac{1}{2} u_{2} u_{4} \\
\mathcal{L}_{2,5}= & -10 u_{1}^{3} u_{2}+10 u_{1} u_{11} u_{12}-5 u_{11}^{2} u_{2}-10 u_{1} u_{111} u_{2}-u_{111} u_{112}+ \\
& u_{1111} u_{12}-u_{11111} u_{2}+\frac{1}{2} u_{2} u_{5} \\
\mathcal{L}_{3,4}= & -u_{11} u_{14}+\frac{1}{2} u_{3} u_{4} \\
\mathcal{L}_{3,5}= & 18 u_{1}^{5}+30 u_{1}^{3} u_{111}-10 u_{1}^{3} u_{3}+6 u_{11}^{2} u_{111}+8 u_{1} u_{11}^{2}-6 u_{1} u_{11} u_{1111}+ \\
& 3 u_{1}^{2} u_{11111}+10 u_{1} u_{11} u_{13}-5 u_{11}^{2} u_{3}-10 u_{1} u_{111} u_{3}-\frac{1}{2} u_{1111}^{2}+ \\
& u_{111} u_{11111}-u_{111} u_{113}+u_{111} u_{13}-u_{11} u_{15}-u_{11111} u_{3}+\frac{1}{2} u_{3} u_{5} \\
\mathcal{L}_{4,5}= & -10 u_{1}^{3} u_{4}+10 u_{1} u_{11} u_{14}-5 u_{11}^{2} u_{4}-10 u_{1} u_{111} u_{4}-u_{111} u_{114}+ \\
& u_{1111} u_{14}-u_{11111} u_{4}+\frac{1}{2} u_{4} u_{5}
\end{aligned}
$$

Coefficients (after some post-limit simplifications)

$$
\begin{aligned}
\mathcal{L}_{1,2}= & \frac{1}{2} u_{1} u_{2} \quad \mathcal{L}_{1,3}=-u_{1}^{3}+\frac{1}{2} u_{11}^{2}+\frac{1}{2} u_{1} u_{3} \\
\mathcal{L}_{1,4}= & \frac{1}{2} u_{1} u_{4} \quad \mathcal{L}_{1,5}=-\frac{5}{2} u_{1}^{4}+5 u_{1} u_{11}^{2}-\frac{1}{2} u_{111}^{2}+\frac{1}{2} u_{1} u_{5} \\
\mathcal{L}_{2,3}= & -3 u_{1}^{2} u_{2}+u_{11} u_{12}-u_{111} u_{2}+\frac{1}{2} u_{2} u_{3} \\
\mathcal{L}_{2,4}= & \frac{1}{2} u_{2} u_{4} \\
\mathcal{L}_{2,5}= & -10 u_{1}^{3} u_{2}+10 u_{1} u_{11} u_{12}-5 u_{11}^{2} u_{2}-10 u_{1} u_{111} u_{2}-u_{111} u_{112}+ \\
& u_{1111} u_{12}-u_{11111} u_{2}+\frac{1}{2} u_{2} u_{5} \\
\mathcal{L}_{3,4}= & -u_{11} u_{14}+\frac{1}{2} u_{3} u_{4} \\
\mathcal{L}_{3,5}= & 18 u_{1}^{5}+30 u_{1}^{3} u_{111}-10 u_{1}^{3} u_{3}+6 u_{11}^{2} u_{111}+8 u_{1} u_{111}^{2}-6 u_{1} u_{11} u_{1111}+ \\
& 3 u_{1}^{2} u_{11111}+10 u_{1} u_{11} u_{13}-5 u_{11}^{2} u_{3}-10 u_{1} u_{111} u_{3}-\frac{1}{2} u_{1111}^{2}+ \\
& u_{111} u_{11111}-u_{111} u_{113}+u_{1111} u_{13}-u_{11} u_{15}-u_{11111} u_{3}+\frac{1}{2} u_{3} u_{5} \\
\mathcal{L}_{4,5}= & -10 u_{1}^{3} u_{4}+10 u_{1} u_{11} u_{14}-5 u_{11}^{2} u_{4}-10 u_{1} u_{111} u_{4}-u_{111} u_{114}+ \\
& u_{1111} u_{14}-u_{11111} u_{4}+\frac{1}{2} u_{4} u_{5}
\end{aligned}
$$

Continuum limits of $A B S$ equations

$$
\mathrm{Q} 1_{\delta=0} \quad \rightarrow \quad v_{3}=v_{111}-\frac{3 v_{11}^{2}}{2 v_{1}}
$$

$$
\mathrm{Q} 1_{\delta=1} \quad \rightarrow \quad v_{3}=v_{111}-\frac{3}{2} \frac{v_{11}^{2}-\frac{1}{4}}{v_{1}}
$$

$$
\text { Q2 } \quad \rightarrow \quad v_{3}=v_{111}-\frac{3}{2} \frac{v_{11}^{2}-\frac{1}{4}}{v_{1}}-\frac{3}{2} \frac{v_{1}^{3}}{v^{2}}
$$

$$
\mathrm{Q} 3_{\delta=0} \quad \rightarrow \quad v_{3}=v_{111}-\frac{3}{2} \frac{v_{11}^{2}-\frac{1}{4}}{v_{1}}+\frac{1}{2} v_{1}^{3}
$$

$$
\mathrm{Q} 3_{\delta=1} \quad \rightarrow \quad v_{3}=v_{111}-\frac{3}{2} \frac{v_{11}^{2}-\frac{1}{4}}{v_{1}}+\frac{1}{2} v_{1}^{3}-\frac{3}{2} \frac{v_{1}^{3}}{\sin (v)^{2}}
$$

Q4 $\quad \rightarrow \quad v_{3}=v_{111}-\frac{3}{2} \frac{v_{11}-\frac{1}{4}}{v_{1}}-\frac{3}{2} \wp(2 v) v_{1}^{3}$
$\mathrm{H} 1 \quad \rightarrow \quad v_{3}=v_{111}+3 v_{1}^{2}$
$\mathrm{H} 3_{\delta=0} \quad \rightarrow \quad v_{3}=v_{111}+\frac{1}{2} v_{1}^{3}$
Krichever-Novikov

Potential KdV

Potential mKdV

Conclusions

- The pluri-Lagrangian (or Lagrangian multiform) principle is a widely applicable characterization of integrability:
It applies to integrable ODEs and PDEs, and to integrable difference equations of any dimension.
- (Almost-)closedness of the pluri-Lagrangian form, i.e. $\mathrm{d} \mathcal{L}=$ const is related to variational symmetries.
- Tools to construct pluri-Lagrangian structures:
- Variational symmetries
- Continuum limits
- Open questions:
- Pluri-Lagrangian 3-form systems
- Precise relation to (bi-)Hamiltonian structures

Selected references

General	- Lobb, Nijhoff. Lagrangian multiforms and multidimensional consistency. J. Phys. A. 2009. - Suris. Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms. J. Geometric Mechanics, 2013 - Boll, Petrera, Suris. What is integrability of discrete variational systems? Proc. R. Soc. A. 2014. - Suris, V. On the Lagrangian structure of integrable hierarchies. In: Advances in Discrete Differential Geometry, Springer. 2016.
Variational symmetries	Petrera, Suris. Variational symmetries and pluri-Lagrangian systems in classical mechanics. J. Nonlin. Math. Phys., 2017. Petrera, V. Variational symmetries and pluri-Lagrangian hierarchies. In preparation.
Continuum limits	V. Continuum limits of pluri-Lagrangian systems. Journal of Integrable Systems, 2019 V. A variational perspective on continuum limits of $A B S$ and lattice GD equations, arXiv:1811.01855

Thank you for your attention!

