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Variational analogue of {Hi ,Hj} = 0

Integrable systems come in families:

finite (classical mechanics, . . . ) or infinite (Toda lattice, KdV
equation,. . . ) hierarchies of commuting equations.

On the Hamiltonian side, integrability is characterized by {Hi ,Hj} = 0.

Consequence: ODEs for Hi and Hj commute: d
dti

d
dtj

= d
dtj

d
dti

What about the Lagrangian side?

Pluri-Lagrangian principle (d = 1)

Combine the Lagrange functions Li [u] into a Lagrangian 1-form

L[u] =
∑
i

Li [u]dti .

Look for fields u : RN → C that minimize the action

SΓ =

∫
Γ
L

w.r.t. variations of u, simultaneously over every curve Γ in multi-time RN
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Multi-time Euler-Lagrange equations

Consider a Lagrangian one-form L =
∑
i

Li [u] dti

Lemma

If the action
∫
S L is critical on all stepped curves S

in RN , then it is critical on all smooth curves.

Variations are local, so it is sufficient to look at a
general L-shaped curve S = Si ∪ Sj .

ti

tj

Si

Sj

p
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Multi-time Euler-Lagrange equations
The variation of the action on Si is

δ

∫
Si

Li dti =

∫
Si

∑
I

∂Li
∂uI

δuI dti

=

∫
Si

∑
I 63ti

δiLi
δuI

δuI dti +
∑
I

δiLi
δuIti

δuI

∣∣∣∣
p

,
ti

tj

Si

Sj

p

where I denotes a multi-index, and

δiLi
δuI

=
∞∑
α=0

(−1)α
dα

dtαi

∂Li
∂uItαi

=
∂Li
∂uI
− d

dti

∂Li
∂uIti

+
d2

dt2
i

∂Li
∂uIt2

i

− . . .

Multi-time Euler-Lagrange equations for curves, L =
∑

i Li [u] dti

δiLi
δuI

= 0 ∀I 63 ti and
δiLi
δuIti

=
δjLj
δuItj

∀I ,
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Example: Kepler Problem

The classical Lagrangian of a particle in the gravitational potential

L1[q] =
1

2
|qt1 |2 +

1

|q|
can be combined with

L2[q] = qt1 · qt2 + (q1 × q) · e,

into a pluri-Lagrangian 1-form L1dt1 + L2dt2 and consider q = q(t1, t2).

Multi-time Euler-Lagrange equations:

δ1L1

δq
= 0 ⇒ qt1t1 = − q

|q|3
(Keplerian motion)

δ2L2

δq
= 0 ⇒ qt1t2 = e × q1

δ2L2

δqt1

= 0 ⇒ qt2 = e × q (Rotation)

δ1L1

δqt1

=
δ2L2

δqt2

⇒ qt1 = qt1
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Discrete pluri-Lagrangian principle (d = 1)

Q : ZN → M and L a discrete 1-form: L
(
Qi ,Q, λi

)
= −L

(
Q,Qi , λi

)

Q−i Q Qi

Q−i ,j Qj Qi ,j

λi

λi

λj λj λj

Discrete pluri-Lagrangian principle

Action sum is critical along any discrete curve in the lattice.

Discrete multi-time Euler-Lagrange equations

Q−i Q Qi
∂

∂Q

(
L
(
Q−i ,Q, λi

)
+ L
(
Q,Qi , λi

))
= 0

Qj

Q Qi

∂

∂Q

(
L
(
Qj ,Q, λj

)
+ L
(
Q,Qi , λi

))
= 0
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Discrete pluri-Lagrangian 1-forms

Q−i Q Qi
∂

∂Q

(
L
(
Q−i ,Q, λi

)
+ L
(
Q,Qi , λi

))
= 0

Qj

Q Qi

∂

∂Q

(
L
(
Qj ,Q, λj

)
+ L
(
Q,Qi , λi

))
= 0

If Q : ZN → M is a solution, then we can find P such that

P = − ∂

∂Q
L
(
Qi ,Q, λi

)
=

∂

∂Q
L
(
Q−i ,Q, λi

)
for i = 1, . . . ,N

Then
(Q,P) 7→ (Qi ,Pi ) for i = 1, . . . ,N

are commuting symplectic maps on T ∗M.

Examples

I Discrete-time Toda lattice. M = Rn

I Billiards in confocal quadrics. M = Sn (unit velocities)
I . . .
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Quad equations

Q(U,U1,U2,U12, λ1, λ2) = 0

Subscripts of U denote lattice shifts, λ1, λ2

are parameters.
Invariant under symmetries of the square,
affine in each of U,U1,U2,U12.

Integrability for systems quad equations:
Multi-dimensional consistency of

Q(U,Ui ,Uj ,Uij , λi , λj) = 0,

i.e. the thrunderee ways of calculating U123

give the same result.

Classification (under some extra assumptions)
by Adler, Bobenko and Suris (ABS List).

Example: lattice potential KdV:
(U − U12)(U1 − U2)− λ1 + λ2 = 0

U1

U12U2

U

λ1

λ2

U1

U13

U3

U

U12

U123U23

U2

λ1

λ2

λ3
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Pluri-Lagrangian structure for quad equations

For some discrete 2-form

L(�ij) = L(U,Ui ,Uj ,Uij , λi , λj),

the action
∑
�∈Γ

L(�) is critical on all 2-surfaces Γ in NN simultaneously.

To derive Euler-Lagrange equations: vary U at each point individually.

↪→ It is sufficient to consider corners of an elementary cube.

[Lobb, Nijhoff. 2009]
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Pluri-Lagrangian principle (d = 2, continuous)

Given a 2-form
L =

∑
i ,j Lij [u] dti ∧ dtj ,

find a field u : RN → C, such that

∫
Γ
L is critical on all smooth 2-surfaces

Γ in multi-time RN .

Example: KdV hierarchy, where t1 = x is the shared space coordinate, ti
time for i-th flow. (Details will follow.)
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Multi-time EL equations

Consider a Lagrangian 2-form L =
∑
i ,j

Lij [u] dti ∧ dtj .

Every smooth surface can be approximated arbitrarily well by stepped
surfaces. Hence it is sufficient to require criticality on stepped surfaces, or
just on their elementary corners.

p
ti

tj

tk
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Multi-time EL equations

for L =
∑
i ,j

Lij [u]dti ∧ dtj

δijLij
δuI

= 0 ∀I 63 ti , tj ,

δijLij
δuItj

=
δikLik
δuItk

∀I 63 ti ,

δijLij
δuIti tj

+
δjkLjk
δuItj tk

+
δkiLki
δuItk ti

= 0 ∀I .

p
ti

tj

tk

Where
δijLij
δuI

=
∞∑
α=0

∞∑
β=0

(−1)α+β dα

dtαi

dβ

dtβj

∂Lij
∂u

Itαi tβj

[Suris, V. 2016.]
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Example: Potential KdV hierarchy

ut2 = g2[u] = uxxx + 3u2
x ,

ut3 = g3[u] = uxxxxx + 10uxuxxx + 5u2
xx + 10u3

x ,

where we identify t1 = x .

The differentiated equations uxti = d
dx gi [u] are Lagrangian with

L12 =
1

2
uxut2 −

1

2
uxuxxx − u3

x ,

L13 =
1

2
uxut3 − uxuxxxxx − 2uxxuxxxx −

3

2
u2
xxx + 5u2

xuxxx + 5uxu
2
xx +

5

2
u4
x .

We choose the coefficient L23 of

L = L12[u]dt1 ∧ dt2 + L13[u]dt1 ∧ dt3 + L23[u]dt2 ∧ dt3

such that the pluri-Lagrangian 2-form is closed on solutions (nontrivial
task!). It is of the form

L23 =
1

2
(ut2g3[u]− ut3g2[u]) + p23[u].
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Example: Potential KdV hierarchy

I The equations
δ12L12

δu
= 0 and

δ13L13

δu
= 0 yield

uxt2 =
d

dx
g2[u] and uxt3 =

d

dx
g3[u].

I The equations
δ12L12

δux
=
δ32L32

δut3

and
δ13L13

δux
=
δ23L23

δut2

yield

ut2 = g2 and ut3 = g3,

the evolutionary equations!

I All other multi-time EL equations are corollaries of these.
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Closedness of the Lagrangian form

One could require additionaly that L is closed on solutions
↪→ “Lagrangian multiform systems”.

Then the action is not just critical on every curve/surface, but also takes
the same value on every curve/surface.

We do not take this as part of the definition, because one can show

Proposition

dL is constant on the set of solutions.
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Closedness relates to other notions of integrability

If d

(∑
i

Li dti

)
= 0, then

dLk
dtj

=
dLj
dtk

Variational symmetries

tj -flow deforms Lk by a tk -derivative.
⇒ Individual flows are variational symmetries of each other.

Same in higher dimensions.

Variational symmetries can be used to construct pluri-Lagrangian
structures
I d = 1: [Petrera, Suris, 2017],
I d = 2: [Petrera, V, in preparation]

Hamiltonians in involution
I d = 1: Legendre transform and clever use of variational principle

gives dHk
dtj

= {Hj ,Hk} = 0 [Suris, 2013]

I d = 2: [Suris, V, 2016] and work in progress.
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Miwa shifts

Continuum limit of an integrable difference equation

Skew embedding of the mesh ZN into multi-time RN

Discrete Q is a sampling of the continuous q:

Q = Q(n) = q(t1, t2, . . . , tN),

Qi = Q(n + ei ) = q

(
t1 − 2λi , t2 + 2

λ2
i

2
, . . . , tN + 2(−1)N

λNi
N

)
[Miwa. On Hirota’s difference equations. Proceedings of the Japan Academy A. 1982]

Write quad equation in terms of q and expand in λ1.

In the leading order, we only see t1-derivatives of q, but we want to obtain
PDEs.

↪→ leading order cancellation required to get a meaningful result.

↪→ whole hierarchy from single difference equation.
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Continuum limit of the Lagrangian

I Using Miwa correspondence:

Discrete L → Power series Ldisc[u(t)]

Action for Ldisc[u(t)] is still a sum.

I Two applications of the Euler-Maclaurin formula:

LMiwa([u], λ1, λ2) =
∞∑

i ,j=0

BiBj

i !j!
∂ i1∂

j
2Ldisc([u], λ1, λ2).

where the differential operators are ∂k =
∑N

j=1(−1)j+1 2λjk
j

d
dtj

I Then there holds Ldisc(�) =

∫
�
LMiwa([u(t)], λ1, λ2) η1 ∧ η2,

where η1 and η2 are the 1-forms dual to the Miwa shifts.

This suggests the Lagrangian 2-form∑
1≤i<j≤N

LMiwa([u], λi , λj) ηi ∧ ηj .
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Continuum limit of a Lagrangian 2-form

L(U,U1,U2,U12, λ1, λ2) Suitable choice ⇒ leading order cancellationyMiwa shifts, Taylor expansion

Ldisc([u], λ1, λ2)yEuler-Maclaurin formula

LMiwa([u], λ1, λ2) =
∞∑

i ,j=1

(−1)i+j4
λi1
i

λj2
j
Li ,j [u]

y y∑
1≤i<j≤N

LMiwa([u], λi , λj) ηi ∧ ηj =
∑

1≤i<j≤N
Li ,j [u] dti ∧ dtj
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Continuum limits of ABS equations
Q1δ=0 → v3 = v111 −

3v2
11

2v1
Schwarzian KdV

Q1δ=1 → v3 = v111 −
3

2

v2
11 − 1

4

v1

Q2 → v3 = v111 −
3

2

v2
11 − 1

4

v1
− 3

2

v3
1

v2

Q3δ=0 → v3 = v111 −
3

2

v2
11 − 1

4

v1
+

1

2
v3

1

Q3δ=1 → v3 = v111 −
3

2

v2
11 − 1

4

v1
+

1

2
v3

1 −
3

2

v3
1

sin(v)2

Q4 → v3 = v111 −
3

2

v11 − 1
4

v1
− 3

2
℘(2v)v3

1 Krichever-Novikov

H1 → v3 = v111 + 3v2
1 Potential KdV

H3δ=0 → v3 = v111 +
1

2
v3

1 Potential mKdV

All with their hierarchies
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Conclusions

I The pluri-Lagrangian (or Lagrangian multiform) principle is a widely
applicable characterization of integrability:

It applies to integrable ODEs and PDEs, and to integrable difference
equations of any dimension.

I (Almost-)closedness of the pluri-Lagrangian form (dL = const) links
this pluri-Lagrangian system to the established theory of integrable
systems.

I Discrete theory is better understood: continuum limits are a useful
tool to develop the continuous theory.
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