# A variational principle for discrete and continuous integrable systems

Mats Vermeeren



May 8, 2019





Discretization in Geometry and Dynamics SFB Transregio 109

#### Contents

#### Mechanics

- Continuous
- Discrete
- 2 2-dimensional PDEs
  - Discrete
  - Continuous

#### 3 Continuum limits

Pluri-Lagrangian formalism (a.k.a. Lagrangian multiforms)

A variational description for many kinds of integrable systems:

|           | continuous | discrete |
|-----------|------------|----------|
| d = 1     | ODEs       | maps     |
| $d \ge 2$ | PDEs       | PΔEs     |

# Table of Contents

#### 1 Mechanics

- Continuous
- Discrete

#### 2 2-dimensional PDEs

- Discrete
- Continuous

#### 3 Continuum limits

# Variational analogue of $\{H_i, H_j\} = 0$

Integrable systems come in families:

finite (classical mechanics,  $\dots$ ) or infinite (Toda lattice, KdV equation,...) hierarchies of commuting equations.

On the Hamiltonian side, integrability is characterized by  $\{H_i, H_j\} = 0$ . Consequence: ODEs for  $H_i$  and  $H_j$  commute:  $\frac{d}{dt_i} \frac{d}{dt_i} = \frac{d}{dt_i} \frac{d}{dt_i}$ 

What about the Lagrangian side?

# Variational analogue of $\{H_i, H_j\} = 0$

Integrable systems come in families:

finite (classical mechanics,  $\dots$ ) or infinite (Toda lattice, KdV equation,...) hierarchies of commuting equations.

On the Hamiltonian side, integrability is characterized by  $\{H_i, H_j\} = 0$ . Consequence: ODEs for  $H_i$  and  $H_j$  commute:  $\frac{d}{dt_i} \frac{d}{dt_i} = \frac{d}{dt_i} \frac{d}{dt_i}$ 

What about the Lagrangian side?

#### Pluri-Lagrangian principle (d = 1)

Combine the Lagrange functions  $\mathcal{L}_i[u]$  into a Lagrangian 1-form

$$\mathcal{L}[u] = \sum_{i} \mathcal{L}_{i}[u] \, \mathrm{d}t_{i}.$$

Look for fields  $u: \mathbb{R}^N \to \mathbb{C}$  that minimize the action

$$S_{\Gamma} = \int_{\Gamma} \mathcal{L}$$

w.r.t. variations of u, simultaneously over every curve  $\Gamma$  in multi-time  $\mathbb{R}^N$ 

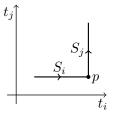
# Multi-time Euler-Lagrange equations

Consider a Lagrangian one-form  $\mathcal{L} = \sum_{i} \mathcal{L}_{i}[u] dt_{i}$ 

#### Lemma

If the action  $\int_{S} \mathcal{L}$  is critical on all stepped curves S in  $\mathbb{R}^{N}$ , then it is critical on all smooth curves.

Variations are local, so it is sufficient to look at a general L-shaped curve  $S = S_i \cup S_j$ .



## Multi-time Euler-Lagrange equations

The variation of the action on  $S_i$  is

where I denotes a multi-index, and

$$\frac{\delta_i \mathcal{L}_i}{\delta u_l} = \sum_{\alpha=0}^{\infty} (-1)^{\alpha} \frac{\mathrm{d}^{\alpha}}{\mathrm{d}t_i^{\alpha}} \frac{\partial \mathcal{L}_i}{\partial u_{lt_i^{\alpha}}} = \frac{\partial \mathcal{L}_i}{\partial u_l} - \frac{\mathrm{d}}{\mathrm{d}t_i} \frac{\partial \mathcal{L}_i}{\partial u_{lt_i}} + \frac{\mathrm{d}^2}{\mathrm{d}t_i^2} \frac{\partial \mathcal{L}_i}{\partial u_{lt_i^2}} - \dots$$

Multi-time Euler-Lagrange equations for curves,  $\mathcal{L} = \sum_{i} \mathcal{L}_{i}[u] dt_{i}$ 

$$\frac{\delta_i \mathcal{L}_i}{\delta u_l} = 0 \qquad \forall l \not\ni t_i \qquad \text{and} \qquad \frac{\delta_i \mathcal{L}_i}{\delta u_{lt}}$$

$$\frac{\delta_i \mathcal{L}_i}{u_{lt_i}} = \frac{\delta_j \mathcal{L}_j}{\delta u_{lt_i}} \qquad \forall l$$

 $t_i$ 

#### Example: Kepler Problem

The classical Lagrangian of a particle in the gravitational potential

$$\mathcal{L}_1[q] = rac{1}{2} |q_{t_1}|^2 + rac{1}{|q|}$$

can be combined with

$$\mathcal{L}_2[q] = q_{t_1} \cdot q_{t_2} + (q_1 \times q) \cdot e,$$

into a pluri-Lagrangian 1-form  $\mathcal{L}_1 dt_1 + \mathcal{L}_2 dt_2$  and consider  $q = q(t_1, t_2)$ .

#### Example: Kepler Problem

The classical Lagrangian of a particle in the gravitational potential

$$\mathcal{L}_1[q] = rac{1}{2} |q_{t_1}|^2 + rac{1}{|q|}$$

can be combined with

$$\mathcal{L}_2[q] = q_{t_1} \cdot q_{t_2} + (q_1 \times q) \cdot e,$$

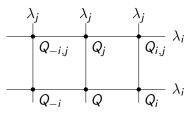
into a pluri-Lagrangian 1-form  $\mathcal{L}_1 dt_1 + \mathcal{L}_2 dt_2$  and consider  $q = q(t_1, t_2)$ . Multi-time Euler-Lagrange equations:

$$\begin{aligned} \frac{\delta_1 \mathcal{L}_1}{\delta q} &= 0 \quad \Rightarrow \quad q_{t_1 t_1} = -\frac{q}{|q|^3} \quad \text{(Keplerian motion} \\ \frac{\delta_2 \mathcal{L}_2}{\delta q} &= 0 \quad \Rightarrow \quad q_{t_1 t_2} = e \times q_1 \\ \frac{\delta_2 \mathcal{L}_2}{\delta q_{t_1}} &= 0 \quad \Rightarrow \quad q_{t_2} = e \times q \quad \text{(Rotation)} \\ \frac{\mathcal{L}_1}{q_{t_1}} &= \frac{\delta_2 \mathcal{L}_2}{\delta q_{t_2}} \quad \Rightarrow \quad q_{t_1} = q_{t_1} \end{aligned}$$

Mats Vermeeren (TU Berlin) A variational p

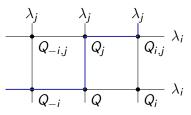
Discrete pluri-Lagrangian principle (d = 1)

 $Q:\mathbb{Z}^{N}
ightarrow M$  and L a discrete 1-form:  $L(Q_{i},Q,\lambda_{i})=-L(Q,Q_{i},\lambda_{i})$ 



Discrete pluri-Lagrangian principle (d = 1)

 $Q:\mathbb{Z}^{N}
ightarrow M$  and L a discrete 1-form:  $L(Q_{i},Q,\lambda_{i})=-L(Q,Q_{i},\lambda_{i})$ 



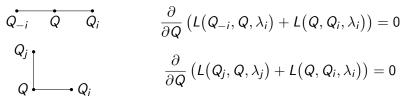
#### Discrete pluri-Lagrangian principle

Action sum is critical along any discrete curve in the lattice.

Discrete multi-time Euler-Lagrange equations

 $\begin{array}{ccc} & & & & & \\ Q_{-i} & & & Q_i \\ Q_{-i} & & & & \\ Q_{i} & & & \\ Q$ 

Discrete pluri-Lagrangian 1-forms



If  $Q: \mathbb{Z}^N \to M$  is a solution, then we can find P such that

$$P = -\frac{\partial}{\partial Q} L(Q_i, Q, \lambda_i) = \frac{\partial}{\partial Q} L(Q_{-i}, Q, \lambda_i) \quad \text{for } i = 1, \dots, N$$

Then

$$(Q, P) \mapsto (Q_i, P_i)$$
 for  $i = 1, \dots, N$ 

are commuting symplectic maps on  $T^*M$ .

#### Examples

- Discrete-time Toda lattice.  $M = \mathbb{R}^n$
- Billiards in confocal quadrics. M = S<sup>n</sup> (unit velocities)

Mats Vermeeren (TU Berlin)

# Table of Contents

#### Mechanics

- Continuous
- Discrete



- Discrete
- Continuous

#### 3 Continuum limits

## Quad equations

 $\mathcal{Q}(U, U_1, U_2, U_{12}, \lambda_1, \lambda_2) = 0$ 

Subscripts of U denote lattice shifts,  $\lambda_1,\lambda_2$  are parameters.

Invariant under symmetries of the square, affine in each of  $U, U_1, U_2, U_{12}$ .

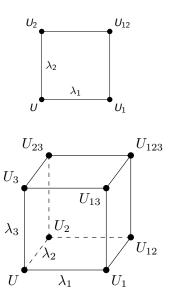
Integrability for systems quad equations: Multi-dimensional consistency of

 $\mathcal{Q}(U, U_i, U_j, U_{ij}, \lambda_i, \lambda_j) = 0,$ 

i.e. the thrunderee ways of calculating  $U_{123}$  give the same result.

Classification (under some extra assumptions) by Adler, Bobenko and Suris (ABS List).

Example: lattice potential KdV:  $(U - U_{12})(U_1 - U_2) - \lambda_1 + \lambda_2 = 0$ 



## Quad equations

 $\mathcal{Q}(U, U_1, U_2, U_{12}, \lambda_1, \lambda_2) = 0$ 

Subscripts of U denote lattice shifts,  $\lambda_1,\lambda_2$  are parameters.

Invariant under symmetries of the square, affine in each of  $U, U_1, U_2, U_{12}$ .

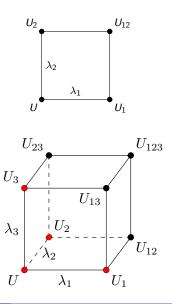
Integrability for systems quad equations: Multi-dimensional consistency of

 $\mathcal{Q}(U, U_i, U_j, U_{ij}, \lambda_i, \lambda_j) = 0,$ 

i.e. the thrunderee ways of calculating  $U_{123}$  give the same result.

Classification (under some extra assumptions) by Adler, Bobenko and Suris (ABS List).

Example: lattice potential KdV:  $(U - U_{12})(U_1 - U_2) - \lambda_1 + \lambda_2 = 0$ 



## Quad equations

 $\mathcal{Q}(U, U_1, U_2, U_{12}, \lambda_1, \lambda_2) = 0$ 

Subscripts of U denote lattice shifts,  $\lambda_1,\lambda_2$  are parameters.

Invariant under symmetries of the square, affine in each of  $U, U_1, U_2, U_{12}$ .

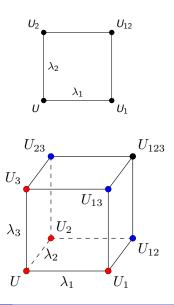
Integrability for systems quad equations: Multi-dimensional consistency of

 $\mathcal{Q}(U, U_i, U_j, U_{ij}, \lambda_i, \lambda_j) = 0,$ 

i.e. the thrunderee ways of calculating  $U_{123}$  give the same result.

Classification (under some extra assumptions) by Adler, Bobenko and Suris (ABS List).

Example: lattice potential KdV:  $(U - U_{12})(U_1 - U_2) - \lambda_1 + \lambda_2 = 0$ 

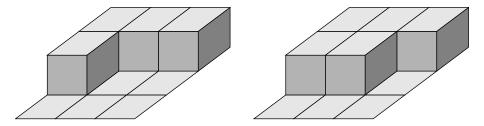


# Pluri-Lagrangian structure for quad equations

For some discrete 2-form

$$\mathcal{L}(\Box_{ij}) = \mathcal{L}(U, U_i, U_j, U_{ij}, \lambda_i, \lambda_j),$$

the action  $\sum_{\Box \in \Gamma} \mathcal{L}(\Box)$  is critical on all 2-surfaces  $\Gamma$  in  $\mathbb{N}^N$  simultaneously.



To derive Euler-Lagrange equations: vary U at each point individually.  $\hookrightarrow$  It is sufficient to consider corners of an elementary cube.

[Lobb, Nijhoff. 2009]

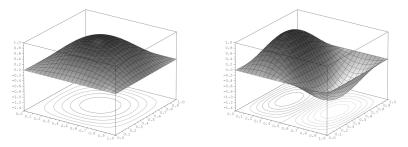
May 8, 2019 12 / 26

# Pluri-Lagrangian principle (d = 2, continuous)

Given a 2-form

$$\mathcal{L} = \sum_{i,j} L_{ij}[u] \,\mathrm{d}t_i \wedge \mathrm{d}t_j,$$

find a field  $u : \mathbb{R}^N \to \mathbb{C}$ , such that  $\int_{\Gamma} \mathcal{L}$  is critical on all smooth 2-surfaces  $\Gamma$  in multi-time  $\mathbb{R}^N$ .

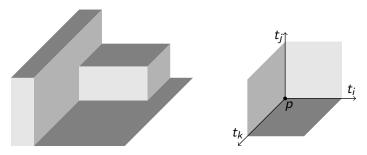


Example: KdV hierarchy, where  $t_1 = x$  is the shared space coordinate,  $t_i$  time for *i*-th flow. (Details will follow.)

## Multi-time EL equations

Consider a Lagrangian 2-form 
$$\mathcal{L} = \sum_{i,j} \mathcal{L}_{ij}[u] dt_i \wedge dt_j$$
.

Every smooth surface can be approximated arbitrarily well by stepped surfaces. Hence it is sufficient to require criticality on stepped surfaces, or just on their elementary corners.



## Multi-time EL equations

for 
$$\mathcal{L} = \sum_{i,j} \mathcal{L}_{ij}[u] \, \mathrm{d} t_i \wedge \mathrm{d} t_j$$

$$\frac{\delta_{ij}\mathcal{L}_{ij}}{\delta u_{l}} = 0 \qquad \forall l \not\ni t_{i}, t_{j}, \qquad t_{j}^{\uparrow} \\
\frac{\delta_{ij}\mathcal{L}_{ij}}{\delta u_{lt_{j}}} = \frac{\delta_{ik}\mathcal{L}_{ik}}{\delta u_{lt_{k}}} \qquad \forall l \not\ni t_{i}, \qquad t_{i}^{\downarrow} \\
\frac{\delta_{ij}\mathcal{L}_{ij}}{\delta u_{lt_{i}t_{j}}} + \frac{\delta_{jk}\mathcal{L}_{jk}}{\delta u_{lt_{j}t_{k}}} + \frac{\delta_{ki}\mathcal{L}_{ki}}{\delta u_{lt_{k}t_{i}}} = 0 \qquad \forall I. \qquad t_{k}^{\downarrow}$$

Where

$$\frac{\delta_{ij}\mathcal{L}_{ij}}{\delta u_{l}} = \sum_{\alpha=0}^{\infty} \sum_{\beta=0}^{\infty} (-1)^{\alpha+\beta} \frac{\mathrm{d}^{\alpha}}{\mathrm{d}t_{i}^{\alpha}} \frac{\mathrm{d}^{\beta}}{\mathrm{d}t_{j}^{\beta}} \frac{\partial \mathcal{L}_{ij}}{\partial u_{lt_{i}^{\alpha}t_{j}^{\beta}}}$$

[Suris, V. 2016.]

#### Example: Potential KdV hierarchy

$$\begin{split} u_{t_2} &= g_2[u] = u_{xxx} + 3u_x^2, \\ u_{t_3} &= g_3[u] = u_{xxxx} + 10u_x u_{xxx} + 5u_{xx}^2 + 10u_x^3, \\ \text{where we identify } t_1 &= x. \end{split}$$

The differentiated equations  $u_{ imes t_i} = rac{\mathrm{d}}{\mathrm{d} \mathrm{x}} g_i[u]$  are Lagrangian with

$$\mathcal{L}_{12} = \frac{1}{2}u_{x}u_{t_{2}} - \frac{1}{2}u_{x}u_{xxx} - u_{x}^{3},$$
  
$$\mathcal{L}_{13} = \frac{1}{2}u_{x}u_{t_{3}} - u_{x}u_{xxxx} - 2u_{xx}u_{xxxx} - \frac{3}{2}u_{xxx}^{2} + 5u_{x}^{2}u_{xxx} + 5u_{x}u_{xx}^{2} + \frac{5}{2}u_{x}^{4}.$$

## Example: Potential KdV hierarchy

$$\begin{split} u_{t_2} &= g_2[u] = u_{xxx} + 3u_x^2, \\ u_{t_3} &= g_3[u] = u_{xxxxx} + 10u_x u_{xxx} + 5u_{xx}^2 + 10u_x^3, \\ \text{where we identify } t_1 &= x. \end{split}$$

The differentiated equations  $u_{ imes t_i} = rac{\mathrm{d}}{\mathrm{d} \mathrm{x}} g_i[u]$  are Lagrangian with

$$\mathcal{L}_{12} = \frac{1}{2}u_{x}u_{t_{2}} - \frac{1}{2}u_{x}u_{xxx} - u_{x}^{3},$$
  
$$\mathcal{L}_{13} = \frac{1}{2}u_{x}u_{t_{3}} - u_{x}u_{xxxx} - 2u_{xx}u_{xxxx} - \frac{3}{2}u_{xxx}^{2} + 5u_{x}^{2}u_{xxx} + 5u_{x}u_{xx}^{2} + \frac{5}{2}u_{x}^{4}.$$

We choose the coefficient  $\mathcal{L}_{23}$  of

$$\mathcal{L} = \mathcal{L}_{12}[u] \,\mathrm{d}t_1 \wedge \mathrm{d}t_2 + \mathcal{L}_{13}[u] \,\mathrm{d}t_1 \wedge \mathrm{d}t_3 + \mathcal{L}_{23}[u] \,\mathrm{d}t_2 \wedge \mathrm{d}t_3$$

such that the pluri-Lagrangian 2-form is closed on solutions (nontrivial task!). It is of the form

$$\mathcal{L}_{23} = \frac{1}{2}(u_{t_2}g_3[u] - u_{t_3}g_2[u]) + p_{23}[u].$$

Example: Potential KdV hierarchy

the evolutionary equations!

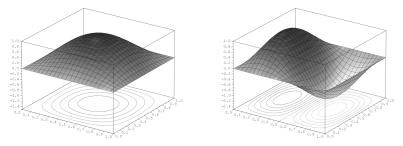
All other multi-time EL equations are corollaries of these.

# Closedness of the Lagrangian form

One could require additionaly that  $\ensuremath{\mathcal{L}}$  is closed on solutions

 $\hookrightarrow$  "Lagrangian multiform systems".

Then the action is not just critical on every curve/surface, but also takes the same value on every curve/surface.



We do not take this as part of the definition, because one can show

#### Proposition

 $\mathrm{d}\mathcal{L}$  is constant on the set of solutions.

Closedness relates to other notions of integrability

If 
$$d\left(\sum_{i} \mathcal{L}_{i} dt_{i}\right) = 0$$
, then  $\frac{d\mathcal{L}_{k}}{dt_{j}} = \frac{d\mathcal{L}_{j}}{dt_{k}}$ 

#### Variational symmetries

 $t_j$ -flow deforms  $\mathcal{L}_k$  by a  $t_k$ -derivative.

 $\Rightarrow$  Individual flows are variational symmetries of each other.

Same in higher dimensions.

Variational symmetries can be used to construct pluri-Lagrangian structures

• d = 2: [Petrera, V, in preparation]

#### Hamiltonians in involution

*d* = 1: Legendre transform and clever use of variational principle gives dH<sub>k</sub>/dt<sub>j</sub> = {H<sub>j</sub>, H<sub>k</sub>} = 0 [Suris, 2013]
 *d* = 2: [Suris, V, 2016] and work in progress.

# Table of Contents

#### Mechanics

- Continuous
- Discrete

#### 2 2-dimensional PDEs

- Discrete
- Continuous

#### 3 Continuum limits

# Miwa shifts

#### Continuum limit of an integrable difference equation

Skew embedding of the mesh  $\mathbb{Z}^N$  into multi-time  $\mathbb{R}^N$ Discrete Q is a sampling of the continuous q:

$$Q = Q(\mathbf{n}) = q(t_1, t_2, \dots, t_N),$$
  

$$Q_i = Q(\mathbf{n} + \mathbf{e}_i) = q\left(t_1 - 2\lambda_i, t_2 + 2\frac{\lambda_i^2}{2}, \dots, t_N + 2(-1)^N \frac{\lambda_i^N}{N}\right)$$

[Miwa. On Hirota's difference equations. Proceedings of the Japan Academy A. 1982]

Write quad equation in terms of q and expand in  $\lambda_1$ .

In the leading order, we only see  $t_1$ -derivatives of q, but we want to obtain PDEs.

- $\hookrightarrow$  leading order cancellation required to get a meaningful result.
- $\hookrightarrow$  whole hierarchy from single difference equation.

## Continuum limit of the Lagrangian

Using Miwa correspondence:

Discrete  $L \rightarrow$  Power series  $\mathcal{L}_{\text{disc}}[u(\mathbf{t})]$ 

Action for  $\mathcal{L}_{disc}[u(\mathbf{t})]$  is still a sum.

Two applications of the Euler-Maclaurin formula:

$$\mathcal{L}_{\mathrm{Miwa}}([u], \lambda_1, \lambda_2) = \sum_{i,j=0}^{\infty} \frac{B_i B_j}{i! j!} \partial_1^j \partial_2^j \mathcal{L}_{\mathrm{disc}}([u], \lambda_1, \lambda_2).$$
where the differential operators are  $\partial_k = \sum_{j=1}^N (-1)^{j+1} \frac{2\lambda_k^j}{j} \frac{\mathrm{d}}{\mathrm{d}t_j}$ 

$$\blacktriangleright \text{ Then there holds } L_{\mathrm{disc}}(\Box) = \int_{\mathbf{Z}} \mathcal{L}_{\mathrm{Miwa}}([u(\mathbf{t})], \lambda_1, \lambda_2) \eta_1 \wedge \eta_2,$$

where  $\eta_1$  and  $\eta_2$  are the 1-forms dual to the Miwa shifts. This suggests the Lagrangian 2-form

$$\sum_{1 \leq i < j \leq N} \mathcal{L}_{\text{Miwa}}([u], \lambda_i, \lambda_j) \eta_i \wedge \eta_j.$$

# Continuum limit of a Lagrangian 2-form

```
L(U, U_1, U_2, U_{12}, \lambda_1, \lambda_2) Suitable choice \Rightarrow leading order cancellation
                                          Miwa shifts, Taylor expansion
                          \mathcal{L}_{disc}([u], \lambda_1, \lambda_2)
                      \int \mathsf{Euler-Maclaurin formula} 
 \mathcal{L}_{\mathrm{Miwa}}([u], \lambda_1, \lambda_2) = \sum_{i \ i=1}^{\infty} (-1)^{i+j} 4 \frac{\lambda_1^i}{i} \frac{\lambda_2^j}{j} \mathcal{L}_{i,j}[u] 
   \sum_{\langle i < j \leq N} \mathcal{L}_{\text{Miwa}}([u], \lambda_i, \lambda_j) \eta_i \wedge \eta_j \qquad = \qquad \sum_{1 \leq i < j \leq N} \mathcal{L}_{i,j}[u] \, \mathrm{d} t_i \wedge \mathrm{d} t_j
1 \le i \le N
```

## Continuum limits of ABS equations

 $Q1_{\delta=0} \rightarrow v_3 = v_{111} - \frac{3v_{11}^2}{2v_1}$ Schwarzian KdV Q1<sub> $\delta=1$ </sub>  $\rightarrow$   $v_3 = v_{111} - \frac{3}{2} \frac{v_{11}^2 - \frac{1}{4}}{v_4}$ Q2  $\rightarrow$   $v_3 = v_{111} - \frac{3}{2} \frac{v_{11}^2 - \frac{1}{4}}{v_1} - \frac{3}{2} \frac{v_1^3}{v_2^2}$ Q3<sub> $\delta=0$ </sub>  $\rightarrow$   $v_3 = v_{111} - \frac{3}{2} \frac{v_{11}^2 - \frac{1}{4}}{v_1} + \frac{1}{2} v_1^3$  $Q3_{\delta=1} \rightarrow v_3 = v_{111} - \frac{3}{2} \frac{v_{11}^2 - \frac{1}{4}}{v_1} + \frac{1}{2} v_1^3 - \frac{3}{2} \frac{v_1^3}{\sin(v_1)^2}$ Q4  $\rightarrow$   $v_3 = v_{111} - \frac{3}{2} \frac{v_{11} - \frac{1}{4}}{v_2} - \frac{3}{2} \wp(2v) v_1^3$ Krichever-Novikov H1  $\rightarrow$   $v_3 = v_{111} + 3v_1^2$ Potential KdV  $H3_{\delta=0} \rightarrow v_3 = v_{111} + \frac{1}{2}v_1^3$ Potential mKdV All with their hierarchies

A variational principle for integrable system

# Conclusions

The pluri-Lagrangian (or Lagrangian multiform) principle is a widely applicable characterization of integrability:

It applies to integrable ODEs and PDEs, and to integrable difference equations of any dimension.

- (Almost-)closedness of the pluri-Lagrangian form (dL = const) links this pluri-Lagrangian system to the established theory of integrable systems.
- Discrete theory is better understood: continuum limits are a useful tool to develop the continuous theory.

#### References

| Discrete            | <ul> <li>Lobb, Nijhoff. Lagrangian multiforms and multidimensional<br/>consistency. J. Phys. A. 2009.</li> </ul>                                         |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                     | <ul> <li>Boll, Petrera, Suris. What is integrability of discrete variational<br/>systems? Proc. R. Soc. A. 2014.</li> </ul>                              |  |
|                     | ► Suris. Billiards in confocal quadrics as a pluri-Lagrangian system. Theor. and Appl. Mech., 2016.                                                      |  |
| Continuous          | <ul> <li>Suris. Variational formulation of commuting Hamiltonian flows:<br/>multi-time Lagrangian 1-forms. J. Geometric Mechanics, 2013</li> </ul>       |  |
|                     | <ul> <li>Suris, V. On the Lagrangian structure of integrable hierarchies.<br/>In: Advances in Discrete Differential Geometry, Springer. 2016.</li> </ul> |  |
|                     | <ul> <li>Petrera, Suris. Variational symmetries and pluri-Lagrangian sys-<br/>tems in classical mechanics. J. Nonlin. Math. Phys., 2017.</li> </ul>      |  |
| Continuum<br>limits | <ul> <li>V. Continuum limits of pluri-Lagrangian systems. Journal of<br/>Integrable Systems, 2019</li> </ul>                                             |  |
|                     | ► V. A variational perspective on continuum limits of ABS and lattice GD equations, arXiv:1811.01855                                                     |  |

Thank you for your attention!