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Continuous Lagrangian Mechanics

Lagrange function: L : R2N ∼= TQ → R : (q, q̇) 7→ L(q, q̇).

Solutions are curves q(t) that minimize (or are critical points of) the action

S =

∫ t1

t0

L(q(t), q̇(t))dt

where the integration interval [t0, t1] and the boundary values q(t0) and
q(t1) are fixed.

0 = δS =

∫ t1

t0

∂L

∂q
δq +

∂L

∂q̇
δq̇ dt

=

∫ t1

t0

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δq dt +

(
∂L

∂q̇
δq

)∣∣∣∣t1

t0

Euler-Lagrange Equation:
∂L

∂q
− d

dt

∂L

∂q̇
= 0.
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Legendre transformation

Relates Hamiltonian and Lagrangian formalism:

pq̇ = H(q, p) + L(q, q̇).

Differentiating w.r.t. q̇, p and q,

p =
∂L

∂q̇

q̇ =
∂H

∂p

0 =
∂H

∂q
+
∂L

∂q
=

(
∂H

∂q
+ ṗ

)
+

(
∂L

∂q
− d

dt

∂L

∂q̇

)
,

establishes equivalence between Lagrangian and Hamiltonian equations of
motion.

Only works if the Lagrangian is nondegenerate:

∣∣∣∣∂2L

∂q̇2

∣∣∣∣ 6= 0

Hamiltonian systems preserve the symplectic 2-form ω =
∑

i dpi ∧ dqi .
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Symplectic structure

Let Φt be the flow of a Hamiltonian system, i.e.

Φ0(q, p) = (q, p)

and
d

dt
Φt(q, p) =

(
∂H

∂p
(Φt(q, p)),−∂H

∂q
(Φt(q, p))

)
.

Then for each t, Φt is a symplectic map,

Φ∗tω = ω,

where ω is the canonical symplectic form

ω =
∑
i

dqi ∧ dpi .

Definition

A symplectic integrator is a discretization (in time) of a Hamiltonian
systems, such that each discrete time-step is given by a symplectic map.
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Discrete Lagrangian mechanics

Lagrange function: L : RN × RN → R : (x , x̃) 7→ L(x , x̃).

Solutions are discrete curves x = (x0, x1, . . . , xn) that are critical points of
the action

Sdisc =
n∑

j=1

hLdisc(xj−1, xj)

Euler-Lagrange equation:

D2Ldisc(xj−1, xj) + D1Ldisc(xj , xj+1) = 0,

where D1, D2 denote the partial derivatives of Ldisc.

Definition

A variational integrator for a continuous system with Lagrangian L is a
discrete Lagrangian system with

Ldisc
(
x(t − h), x(t)) ≈ L(x(t), ẋ(t)),

and hence Sdisc ≈ S.
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Equivalence

Theorem

If the Lagrangian/Hamiltonian is regular, variational and symplectic
integrators are equivalent.

Proof. The discrete Lagrangian is a generation function of the symplectic
map describing one time step,

pj = −hD1Ldisc(xj , xj+1)

pj+1 = hD2Ldisc(xj , xj+1) �
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Example: Störmer-Verlet method

Consider a mechanical system ẍ = −U ′(x) with Lagrangian

L(x , ẋ) =
1

2
〈ẋ , ẋ〉 − U(x)

The Störmer-Verlet discretization is given by the discrete Lagrangian

Ldisc(xj , xj+1) =
1

2

〈
xj+1 − xj

h
,
xj+1 − xj

h

〉
− 1

2
U (xj)−

1

2
U (xj+1)

Its discrete Euler-Lagrange equation is
xj+1 − 2xj + xj−1

h2
= −U ′(xj)

Abstract notation: ψ(xj−1, xj , xj+1; h) = 0 with

ψ(xj−1, xj , xj+1; h) =
xj+1 − 2xj + xj−1

h2
+ U ′(xj)

Symplectic equivalent:

xj+1 = xj + hpj −
h2

2
U ′(xj)

pj+1 = pj −
h

2
U ′(xj)−

h

2
U ′(xj+1)

Mats Vermeeren (TU Berlin) Modified equations for variational integrators December 18, 2018 9 / 56



Example: Störmer-Verlet method

Consider a mechanical system ẍ = −U ′(x) with Lagrangian
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Modified Equations

Exact solution of a differential equation:

20 40 60 80 100
t

-1.0

-0.5

0.5

1.0

x

Numerical solution with a variational integrator:

20 40 60 80 100
t

-1.0

-0.5

0.5

1.0

x

Notice conservation of Energy:

I Easy to prove for (continuous) Hamiltonian systems

I Follows by Noether’s theorem from invariance under time-translation
of the Lagrangian

I Symplectic/variational integrators very nearly preserve energy. Why?
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of the Lagrangian

I Symplectic/variational integrators very nearly preserve energy. Why?

20 40 60 80 100
t

-1.0

-0.5

0.5

1.0

x

Idea of proof: find a modified equation, a differential equation with
solutions that interpolate the numerical solutions:

20 40 60 80 100
t

-1.0

-0.5

0.5

1.0

x
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Modified Equations

Modified equations are usually given by power series.
Often they do not converge.

Definition

The differential equation ẍ = f (x , ẋ ; h), where

f (x , ẋ ; h) ' f0(x , ẋ) + hf1(x , ẋ) + h2f2(x , ẋ) + . . .

is a modified equation for the second order difference equation
Ψ(xj−1, xj , xj+1; h) = 0 if, for every k, every solution of the truncated
differential equation

ẍ = Tk
(
fh(x , ẋ)

)
= f0(x , ẋ) + hf1(x , ẋ) + h2f2(x , ẋ) + . . .+ hk fk(x , ẋ).

satisfies
Ψ
(
x(t − h), x(t), x(t + h); h

)
= O

(
hk+1

)
.
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Modified Equations for symplectic integrators

Symplectic integrators are known the very nearly preserve energy, because

Theorem

The modified equation for a symplectic integrator is a Hamiltonian
equation.

Can we arrive at a similar result purely on the Lagrangian side?

Are modified equations for variational integrators Lagrangian?
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General idea

Look for a modified Lagrangian Lmod(x , ẋ) such that the discrete
Lagrangian Ldisc is its exact discrete Lagrangian, i.e.∫ jh

(j−1)h
Lmod(x(t), ẋ(t))dt = hLdisc

(
x((j − 1)h), x(jh)

)
.

The Euler-Lagrange equation of Lmod will then be the modified equation.

The best we can hope for is to find such a modified Lagrangian up to an
error of arbitrarily high order in h.
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The discrete Lagrangian evaluated on a continuous curve

We can write the discrete Lagrangian as a function of x and its
derivatives, all evaluated at the point jh − h

2 ,

Ldisc[x ] = Ldisc

(
x − h

2
ẋ +

1

2

(
h

2

)2

ẍ − . . . ,

x +
h

2
ẋ +

1

2

(
h

2

)2

ẍ + . . . , h

)
.

= Ldisc(xj−1, xj ; h)

Here and in the following:

I [x ] denotes dependence on x and any number of its derivatives,

I we evaluate at t = jh − h
2 whenever we omit the variable t, i.e.

x = x
(
jh − h

2

)
,

I xj = x(jh) and xj−1 = x((j − 1)h).
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A truly continuous Lagrangian

We want to write the discrete action

Sdisc =
n∑

j=1

hLdisc(xj−1, xj) =
n∑

j=1

hLdisc
[
x
(
jh − h

2

)]
as an integral.

Lemma (Euler-MacLaurin formula)

For any smooth function f : R→ RN we have

n∑
j=1

hf

(
jh − h

2

)
'
∫ nh

0

∞∑
i=0

h2i
(
21−2i − 1

) B2i

(2i)!
f (2i)(t) dt

=

∫ nh

0

(
f (t)− h2

24
f̈ (t) +

7h4

5760
f (4)(t) + . . .

)
dt,

where Bi are the Bernoulli numbers.

The symbol ' indicates that this is an asymptotic series.
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A truly continuous Lagrangian

Definition

We call

Lmesh[x(t)] = Ldisc[x(t)] +
∞∑
i=1

(
21−2i − 1

) h2iB2i

(2i)!

d2i

dt2i
Ldisc[x(t)]

= Ldisc[x(t)]− h2

24

d2

dt2
Ldisc[x(t)] +

7h4

5760

d4

dt4
Ldisc[x(t)] + . . .

the meshed modified Lagrangian of Ldisc.

Formally, the meshed modified Lagrangian satisfies∫
Lmesh[x(t)]dt =

∑
hLdisc(xj , xj+1)

where xj = x(jh).

Are we finished?

Lmesh[x ] depends on many more derivatives than the original L(x , ẋ).
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The meshed variational problem

Definition

classical variational problem: find critical curves of some action∫ b
a L[x(t)]dt in the set of smooth curves C∞.

meshed variational problem: find critical curves of some action∫ b
a L[x(t)]dt in the set of piecewise smooth curves that are consistent

with a mesh of size h,

CM,h = {x ∈ C0([a, b]) | ∃t0 ∈ [a, b] : ∀t ∈ [a, b] :

x not smooth at t ⇒ t − t0 ∈ hN}.

t

x

•

•

Classical variational problem

t

x

•
• •

• •
•

Meshed variational problem
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The meshed variational problem

Criticality conditions of a meshed variational problem:

Euler-Lagrange equations:
δL
δx

= 0,

Natural interior conditions: ∀j ≥ 2 :
δL
δx (j)

= 0,

or equivalently: ∀j ≥ 2 :
∂L
∂x (j)

= 0,

where
δL
δx (j)

=
∞∑
k=0

(−1)k
dk

dtk
∂L

∂x (j+k)
.

If L is a non-convergent power series, these equations are formal.

t

x

•

•

Classical variational problem

t

x

•
• •

• •
•

Meshed variational problem
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Exploiting the natural interior conditions

Sdisc(x(0), x(h), . . .) =

∫
Lmesh([x ], h)dt,

hence

Sdisc critical ⇔ δLmesh

δx
= 0.

Variations that are supported on a single mesh interval

I do not change the discrete action

⇒ do not change

∫
Lmesh([x ], h) dt.

I are the variations that produce natural interior conditions

It follows that for Lmesh the NIC are automatically satisfied:

δLmesh

δx
= 0 ⇒ ∀j ≥ 2 :

∂Lmesh

∂x (j)
= 0
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Definition

The modified Lagrangian is the formal power series

Lmod(x , ẋ) = Lmesh[x ]
∣∣∣
ẍ=fh(x ,ẋ), x(3)= d

dt
fh(x ,ẋ), ...

,

where ẍ = fh(x , ẋ) is the modified equation.

The k-th truncation of the modified Lagrangian is

Lmod,k = Tk (Lmod(x , ẋ)) = Tk
(
Lmesh[x ]

∣∣∣
x(j)=F j

k−2(x ,ẋ)

)
,

where Tk denotes truncation after the hk -term and

ẍ = F 2
k (x , ẋ ; h) +O(hk+1) = Fk(x , ẋ ; h) +O(hk+1),

x (3) = F 3
k (x , ẋ ; h) +O(hk+1), x (4) = F 4

k (x , ẋ ; h) +O(hk+1), . . . .

are the k-th truncation of the modified equation and its derivatives.
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Lemma

The meshed modified Lagrangian Lmesh[x ] and the modified Lagrangian
Lmod(x , ẋ) have the same critical curves.

Proof.

∂Lmod,k

∂x
=
∂Lmesh

∂x
+
∂Lmesh

∂ẍ

∂F 2
k

∂x
+
∂Lmesh

∂x (3)

∂Fk
∂x

+ . . .

∣∣∣∣
x(j)=F j

k−1(x ,ẋ)

=
∂Lmesh

∂x
+O(hk+1),

Also,

∂Lmod,k

∂ẋ
=
∂Lmesh

∂ẋ
+
∂Lmesh

∂ẍ

∂F 2
k

∂ẋ
+
∂Lmesh

∂x (3)

∂F 3
k

∂ẋ
+ . . .

∣∣∣∣
x(j)=F j

k−1(x ,ẋ)

=
∂Lmesh

∂ẋ
+O(hk+1),

⇒
∂Lmod,k

∂x
− d

dt

∂Lmod,k

∂ẋ
=
∞∑
j=0

(−1)j
dj

dt j
∂Lmesh

∂x (j)
+O(hk+1). �
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Main result

Theorem

For a discrete Lagrangian Ldisc that is a consistent discretization of some
L, the k-th truncation of the Euler-Lagrange equation of Lmod,k(x , ẋ) is
the k-th truncation of the modified equation.

Proof. Let x be a solution of the Euler-Lagrange equation for Lmod(x , ẋ).
Consider the discrete curve xj = x(jh).

I x is critical for the action
∫
Lmod(x , ẋ) dt.

I By the Lemma, x is critical for the action
∫
Lmesh[x ] dt.

I By construction, the actions Sdisc =
∑

j Ldisc(y(jh), y((j + 1)h)) and

S =
∫ b
a Lmod[y(t)]dt are equal for any smooth curve y .

I Therefore the discrete curve (x(jh))j is critical for the discrete action
Sdisc. Hence

D2Ldisc(x(t − h), x(t)) + D1Ldisc(x(t), x(t + h)) = 0. �
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Example: Störmer-Verlet discretization

L(x , ẋ) =
1

2
|ẋ |2 − U(x),

Ldisc(xj , xj+1) =
1

2

∣∣∣∣xj+1 − xj
h

∣∣∣∣2 − 1

2
U (xj)−

1

2
U (xj+1) .

Its Euler-Lagrange equation is

xj+1 − 2xj + xj−1

h2
= −U ′(xj).

We have

Ldisc[x ] =
〈
ẋ + h2

24x
(3) + . . . , ẋ + h2

24x
(3) + . . .

〉
− 1

2U
(
x − h

2 ẋ + 1
2

(
h
2

)2
ẍ − . . .

)
− 1

2U
(
x + h

2 ẋ + 1
2

(
h
2

)2
ẍ + . . .

)
=

1

2
|ẋ |2 − U +

h2

24

(〈
ẋ , x (3)

〉
− 3U ′ẍ − 3U ′′(ẋ , ẋ)

)
+O(h4)
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Example: Störmer-Verlet discretization

Ldisc[x ] =
1

2
|ẋ |2 − U +

h2

24

(〈
ẋ , x (3)

〉
− 3U ′ẍ − 3U ′′(ẋ , ẋ)

)
+O(h4),

From this we calculate the meshed modified Lagrangian,

Lmesh[x ] = Ldisc[x ]− h2

24

d2

dt2
Ldisc[x ] +O(h4)

=
1

2
|ẋ |2 − U +

h2

24

(〈
ẋ , x (3)

〉
− 3U ′ẍ − 3U ′′(ẋ , ẋ)

)
− h2

24

(
〈ẍ , ẍ〉+

〈
ẋ , x (3)

〉
− U ′ẍ − U ′′(ẋ , ẋ)

)
+O(h4)

=
1

2
|ẋ |2 − U +

h2

24

(
−〈ẍ , ẍ〉 − 2U ′ẍ − 2U ′′(ẋ , ẋ)

)
+O(h4).

Eliminate second derivatives using ẍ = −U ′ +O(h2),

Lmod,3(x , ẋ) =
1

2
|ẋ |2 − U +

h2

24

(
|U ′|2 − 2U ′′(ẋ , ẋ)

)
.
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Example: Störmer-Verlet discretization

The modified Lagrangian is

Lmod,3(x , ẋ) =
1

2
〈ẋ , ẋ〉 − U +

h2

24

(
|U ′|2 − 2U ′′(ẋ , ẋ)

)
.

Observe that this Lagrangian is not separable for general U.

The corresponding Euler-Lagrange equation is

−ẍ − U ′ +
h2

24

(
2U ′′U ′ − 2U ′′′(ẋ , ẋ) + 4U ′′′(ẋ , ẋ) + 4U ′′ẍ

)
= 0.

Solving this for ẍ we find the modified equation

ẍ = −U ′ + h2

12

(
U ′′′(ẋ , ẋ)− U ′′U ′

)
+O(h4).
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The Kepler problem

Potential: U(x) = − 1

|x |
.

Lagrangian: L =
1

2
〈ẋ , ẋ〉+

1

|x |
.

Equation of motion ẍ = − x

|x |3
.

Störmer-Verlet discretization:

xj+1 − 2xj + xj−1

h2
= −U ′(xj).

-3 -2 -1 1 2

-3

-2

-1

1

2

Midpoint discretization:

xj+1 − 2xj + xj−1

h2
= −1

2
U ′
(
xj−1 + xj

2

)
− 1

2
U ′
(
xj + xj+1

2

)
.
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Störmer-Verlet discretization of the Kepler problem

The modified Lagrangian of the Störmer-Verlet discretization is

Lmod,3(x , ẋ) =
1

2
|ẋ |2 − U +

h2

24

(
U ′U ′ − 2U ′′(ẋ , ẋ)

)
.

For the Kepler problem we have U(x) = − 1

|x |
, hence

Lmod,3

(
x , ẋ
)

=
1

2
|ẋ |2 +

1

|x |
+

h2

24

(
1

|x |4
− 2

〈
ẋ , ẋ
〉

|x |3
+ 6

〈
x , ẋ
〉2

|x |5

)
.
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Laplace-Runge-Lenz vector

The shape and orientation of an orbit for the kepler Problem is determined
by the Laplace-Runge-Lenz vector, which is the Noether integral for a
generalized variational symmetry.

For the modified Lagrangian this is only an approximate symmetry.

Lemma (From a perturbative version of Noether’s theorem)

The precession rate for the perturbed Lagrangian

L =
1

2
〈ẋ , ẋ〉+

1

|x |
+ ∆U(x , ẋ),

is in first order approximation

2πa2∂〈∆U(x , ẋ)〉
∂b

radians per period, where a and b are the semimajor and semiminor axes,
and 〈·〉 denotes the time-average along the unperturbed orbit.
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Störmer-Verlet discretization of the Kepler problem

Proposition

The numerical precession rate of the Störmer-Verlet method is

π

24

(
15

a3

b6
− 3

a

b4

)
h2 +O(h4)

-3 -2 -1 1 2

-3

-2

-1

1

2

-3 -2 -1 1 2

-3

-2

-1

1

2

Predicted:
0.0673 rad per
revolution.

Measured:
0.0659 rad per
revolution.
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Midpoint discretization of the Kepler problem

Proposition

The numerical precession rate of the midpoint rule is

− π

12

(
15

a3

b6
− 3

a

b4

)
h2 +O(h4)

-3 -2 -1 1 2 3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-2

-1

1

2

3

Predicted:
−0.134 rad per
revolution.

Measured:
−0.152 rad per
revolution.
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New methods

Precession rate Störmer-Verlet:
π

24

(
15

a3

b6
− 3

a

b4

)
h2 +O(h4)

Precession rate Midpoint rule: − π

12

(
15

a3

b6
− 3

a

b4

)
h2 +O(h4)

This allows us to construct new integrators with precession of order h4.

Mixed Lagrangian L(xj , xj+1) = 2
3LSV (xj , xj+1) + 1

3LMP(xj , xj+1)

Lagrangian composition Lj(xk , xk+1) =

{
LMP(xk , xk+1) if 3|j ,
LSV (xk , xk+1) otherwise.

Composition of difference equations{
xj+1 − 2xj + xj−1 = −h2

2 U ′
(
xj−1+xj

2

)
− h2

2 U ′
(
xj+xj+1

2

)
if j ≡ 2 mod 3,

xj+1 − 2xj + xj−1 = −h2U ′(xj) otherwise.

Is this a variational integrator?
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Qualitative analysis of new methods

-3 -2 -1 1 2

-3

-2

-1

1

2

→ -3 -2 -1 1

-2

-1

1

2
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Precession rates
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MP,SV: old methods LC, ML, DEC: new methods

FR: Forest, Ruth. Fourth-order symplectic integration, 1989.

C: Chin. Symplectic integrators from composite operator factorizations, 1997.
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Lagrangians linear in velocities

L : TRN ∼= R2N → R of the form

L(q, q̇) = 〈α(q) , q̇〉 − H(q),

where α : RN → RN , H : RN → R, and the brackets 〈 , 〉 denote the
standard scalar product.

Let

A(q) = α′(q) =

(
∂αi (q)

∂qj

)
i ,j=1,...,N

and Askew(q) = A(q)T − A(q)

We assume that Askew(q) is invertible, then the Euler-Lagrange equation
for L is given by

q̇ = Askew(q)−1H ′(q)T
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Examples of Lagrangians linear in velocities

I Dynamics of point vortices in the (complex) plane

L(z , z , ż , ż) =
N∑
j=1

Γj Im(z j żj)−
1

π

N∑
j=1

j−1∑
k=1

ΓjΓk log
∣∣zj − zk

∣∣,
↪→ żj =

i

2π

∑
k 6=j

Γk

z j − zk
for j = 1, . . . ,N.

I Variational formulation in phase space

L(p, q, ṗ, q̇) = 〈p , q̇〉 − H(p, q).

↪→ q̇ =

(
∂H

∂p

)T

and ṗ = −
(
∂H

∂q

)T

.

I Guiding centre motion (plasma physics)

I Many PDEs, e.g. nonlinear Schrödinger equation.

(But modified equations are not so useful for PDEs)
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Possible discretization of L(q, q̇) = qTAq̇ − H(q)

Ldisc(qj , qj+1, h) =

(
qj + qj+1

2

)T

A

(
qj+1 − qj

h

)
− 1

2
H(qj)−

1

2
H(qj+1)

Discrete EL equation
qj+1 − qj−1

2h
= (AT − A)−1H ′(qj)

T .

The EL equation involves 3 points ⇒ needs 2 points of initial data.

The differential equation is of 1st order ⇒ needs only 1 point of initial
data.

This means we are dealing with a 2-step method.

I We have a multi-step method, so parasitic oscillations may occur.

Solution: double the dimension of the system: principal and parasitic
part. The enlarged system is still Lagrangian.

I We cannot replace q̇ in the Lagrangian.

Reason: NIC only involve q̈, q(3), · · · .
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Modified equations for 2-step methods

Principal modified equation

q̇ = f (q) + hf1(q) + h2f2(q) + . . .+ hk fk(q)

satisfies

a0q(t) + a1q(t + h) + a2q(t + 2h)

h

= b0f (q(t)) + b1f (q(t + h)) + b2f (q(t + 2h)) +O(hk+1).

Full system of modified equations

ẋ = f0(x , y) + hf1(x , y) + . . .+ hk fk(x , y)

ẏ = g0(x , y) + hg1(x , y) + . . .+ hkgk(x , y),

such that the discrete curve qj = x(t + jh) + (−1)jy(t + jh) satisfies

a0qj + a1qj+1 + a2qj+2

h
= b0f (qj) + b1f (qj+1) + b2f (qj+2) +O(hk+1)

for every choice of t.
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Doubling the dimension

The discrete curve (xj , yj)j∈Z is critical for

L̂(xj , yj , xj+1, yj+1, h) =
1

2
L(xj+yj , xj+1−yj+1, h)+

1

2
L(xj−yj , xj+1+yj+1, h),

if and only if the discrete curves (q+
j )j∈Z and (q−j )j∈Z, defined by

q±j = xj ± (−1)jyj ,

are critical for L(qj , qj+1, h).

Lagrangian for the full system of modified equations
= Lagrangian for the principal modified equation of the extended system.

Hence we can calculate a Lagrangian for the full system of modified
equations with the tools we already have.
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Example 1

For

Ldisc(qj , qj+1, h) =

〈
1

2
Aqj +

1

2
Aqj+1 ,

qj+1 − qj
h

〉
− 1

2
H(qj)−

1

2
H(qj+1)

we find

L̂mod,0(x , y , ẋ , ẏ , h) = 〈Ax , ẋ〉+ 〈Aẏ , y〉 − 1

2
H(x + y)− 1

2
H(x − y).

Its Euler-Lagrange equations are

ẋ = A−1
skew

(
1

2
H ′(x + y)T +

1

2
H ′(x − y)T

)
+O(h),

ẏ = A−1
skew

(
−1

2
H ′(x + y)T +

1

2
H ′(x − y)T

)
+O(h).

Linearize the second equation around y = 0

ẏ = −A−1
skewH

′′(x)y +O(|y |2 + h)
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Example 1

Magnitude of oscillations satisfies

ẏ = −A−1
skewH

′′(x)y +O(|y |2 + h)

Unless the matrix −A−1
skewH

′′(x) is exceptionally friendly, we expect
growing parasitic oscillations.

(Note that an eigenvalue analysis does not apply because −A−1
skewH

′′(x) is
not constant)

5 10 15 20

-2

-1

1

2
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Example 2

For

Ldisc(qj , qj+1, h) =

〈
A
qj + qj+1

2
,
qj+1 − qj

h

〉
− H

(
qj + qj+1

2

)
we find

L̂mod,0(x , y , ẋ , ẏ , h) = 〈Ax , ẋ〉+ 〈Aẏ , y〉 − H(x).

Its Euler-Lagrange equations are

ẋ = A−1
skewH

′(x)T +O(h),

ẏ = 0 +O(h).

Even better, ẏ = 0 to any order → no growing oscillations.
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Contact Hamiltonian dynamics

Contact geometry is an odd-dimensional counterpart to symplectic
geometry. In mechanics, we typically work on T ∗Q × R, a Hamilton
function

H : T ∗Q × R→ R : (q, p, z) 7→ H(q, p, z)

generates dynamics by

q̇ =
∂H

∂p
ż = p

∂H

∂p
− H

ṗ = −∂H
∂q
− p

∂H

∂z

Example. H(q, p, z) = 1
2p

2 + V (q) + αz describes a damped mechanical
system:

q̇ = p ż = p2 − H

ṗ = −V ′(q)− αp
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Contact variational principle

Given a Lagrange function

L : TQ × R→ R,

consider the ode

ż = L(q, q̇, z)

on a fixed interval [0,T ], with z(0),
q(0) and q(T ) prescribed.

Herglotz variational principle:

z(T ) critical under variations of
the curve q.

Given a discrete Lagrange function

L : Q × Q × R→ R,

consider the ode

zj+1 − zj
h

= L(qj , qj+1, zj)

for j ∈ {0, . . . ,N} with z0, q0 and
qN prescribed.

Discrete Herglotz variational
principle:

zN critical under variations of the
discrete curve q.

In this framework, we can adapt the theory
of variational integrators to contact systems.
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Integrable systems

An integrable system is (a system of) nonlinear differential or difference
equation(s), that to some extend behaves like a linear system.

Our perspective

An equation is integrable if it is part of a “sufficiently large” system of
“compatible” equations.

In Mechanics: A Hamiltonian system with Hamilton function
H : T ∗Q ' R2N → R is Liouville-Arnold integrable if there exist N
functionally independent Hamilton functions H = H1,H2, . . .HN in
involution:

{Hi ,Hj} = 0.

(1+1)-dimensional PDEs: Infinite sequence H = H1,H2, . . . of
Hamiltonians in involution.

Variational description of an integrable hierarchy:
pluri-Lagrangian or Lagrangian multiform systems.
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Quad equations

Quad equation:

Q(U,U1,U2,U12, α1, α2) = 0

Subscripts of U denote lattice shifts,
α1, α2 are parameters.
Invariant under symmetries of the square,
affine in each of U,U1,U2,U12.

Integrability for systems quad equations:
Multi-dimensional consistency of

Q(U,Ui ,Uj ,Uij , αi , αj) = 0,

i.e. the three ways of calculating U123

give the same result.

U1

U12U2

U

α1

α2

U1

U13

U3

U

U12

U123U23

U2

α1

α2

α3
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Pluri-Lagrangian structure for quad equations

For some discrete 2-form

L(�ij) = L(U,Ui ,Uj ,Uij , αi , αj),

the action
∑
�∈Γ

L(�) is critical on all 2-surfaces Γ in NN simultaneously.

[Lobb, Nijhoff. Lagrangian multiforms and multidimensional consistency.
J. Phys. A. 2009]
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Continuous Pluri-Lagrangian systems

A field u : RN 7→ Q is a solution of the pluri-Lagrangian problem for the
Lagrangian 2-form,

L =
∑
i ,j

Lij [u]dti ∧ dtj .

if the action
∫

Γ L is critical on all smooth surfaces Γ in RN .

Continuum limits of pluri-Lagrangian systems use many of the ideas
presented today.
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Summary

I Obtaining a high-order modified Lagrangian Lmesh[x ] is relatively
straightforward, but its interpretation is not.

From Lmesh[x ] a first order Lagrangian Lmod,k(x , ẋ) can be found
using the meshed variational principle. (This might be simpler in the
contact formulation.)

I If the Lagrangian is nondegenerate, the modified Lagrangian can also
be obtained by Legendre transform from the modified Hamiltonian.

Our approach extends to degenerate Lagrangians that are linear in
velocities.

I Similar ideas apply to continuum limits of integrable systems.

I Can we get improved error estimates from the Lagrangian
perspective?

What about nonholonomic constraints?

What about PDEs?
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