Modified Equations for Variational Integrators

Mats Vermeeren

Technische Universität Berlin

Brainstorming Workshop on New Developments in Discrete Mechanics, Geometric Integration and Lie-Butcher Series

May 27, 2015

Table Of Contents

Preliminaries

Preliminaries

Modified Equations

Modified Lagrangians

Example: Störmer-Verlet

Kepler problem

Summary

Preliminaries: Lagrangian mechanics

Continuous

Preliminaries

- Action: $S = \int_a^b \mathcal{L}(x(t), \dot{x}(t)) dt$
- Euler-Lagrange equation:

$$\frac{\partial \mathcal{L}}{\partial x}(x(t),\dot{x}(t)) - \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial \mathcal{L}}{\partial \dot{x}}(x(t),\dot{x}(t)) = 0.$$

Discrete

Action: $S_{\text{disc}} = \sum_{i=1}^{n} h L_{\text{disc}}(x_{i-1}, x_i)$, with

$$L_{\mathrm{disc}}(x((t-h),x(t))\approx \mathcal{L}(x(t),\dot{x}(t)),$$

Euler-Lagrange equation:

$$D_2 L_{disc}(x_{i-1}, x_i) + D_1 L_{disc}(x_i, x_{i+1}) = 0.$$

Preliminaries: consistency

Definition

(a) A discrete quantity $\Psi_h(x_j, x_{j+1})$ is a consistent discretization of a continuous quantity $f(x, \dot{x})$ if for any smooth curve x

$$\Psi_h(x(t),x(t+h)) = f(x(t),\dot{x}(t)) + \mathcal{O}(h)$$
 for $h \to 0$.

(b) $\Psi_h(x_{j-1}, x_j, x_{j+1})$ is a consistent discretization of $f(x, \dot{x}, \ddot{x})$ if

$$\Psi_h(x(t-h),x(t),x(t+h))=f(x(t),\dot{x}(t),\ddot{x}(t))+\mathcal{O}(h).$$

Proposition

Preliminaries

If $L_{\rm disc}$ is a consistent discretization of \mathcal{L} , then the discrete Euler-Lagrange equation is a consistent discretization of the continuous Euler-Lagrange equation,

$$D_2 \mathcal{L}_{\text{disc}}(x(t-h), x(t)) + D_1 \mathcal{L}_{\text{disc}}(x(t), x(t+h))$$

$$= \frac{\partial \mathcal{L}}{\partial x(t)}(x(t), \dot{x}(t)) - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial x(t)}(x(t), \dot{x}(t)) \right) + \mathcal{O}(h).$$

Definition (First order equations)

Let $\Psi_h(x_j,x_{j+1})$ be a consistent discretization of some $g(x(t),\dot{x}(t))$, where $\det \frac{\partial g}{\partial \dot{x}} \neq 0$. The differential equation $\dot{x}=f_h(x)$, where

$$f_h(x) \simeq f_0(x) + hf_1(x) + h^2f_2(x) + \dots$$

is a modified equation for the difference equation $\Psi_h(x_j, x_{j+1}) = 0$ if, for every k, every solution of the truncated differential equation

$$\dot{x} = \mathcal{T}_k \left(f_h(x) \right)$$

satisfies $\Psi_h(x(t), x(t+h)) = \mathcal{O}(h^{k+1})$ for all t.

Let $\Psi_h(x_{j-1},x_j,x_{j+1})$ be a consistent discretization of some $g(x(t),\dot{x}(t),\ddot{x}(t))$, where $\det \frac{\partial g}{\partial \ddot{x}} \neq 0$. The differential equation $\ddot{x} = f_h(x,\dot{x})$, where

$$f_h(x,\dot{x}) \simeq f_0(x,\dot{x}) + hf_1(x,\dot{x}) + h^2f_2(x,\dot{x}) + \dots$$

is a modified equation for the second order difference equation $\Psi_h(x_{j-1}, x_j, x_{j+1}) = 0$ if, for every k, every solution of the truncated differential equation

$$\ddot{x} = \mathcal{T}_k \left(f_h(x, \dot{x}) \right)$$

satisfies $\Psi_h(x(t-h),x(t),x(t+h)) = \mathcal{O}(h^{k+1})$ for all t.

Example.

- ▶ Differential equation: $\ddot{x} = -g(x)$
- ▶ Discretization: $x_{j+1} 2x_j + x_{j-1} = -h^2 g(x_j)$.

The modified equation is of the form

$$\ddot{x} = f_h(x) = f_0(x, \dot{x}) + h^2 f_2(x, \dot{x}) + \mathcal{O}(h^4).$$

If
$$x(t) = x_j$$
, then $x_{j\pm 1} = x(t \pm h) = x \pm h\dot{x} + \frac{h^2}{2}\ddot{x} \pm \frac{h^3}{6}x^{(3)} + \dots$

Plugging this into the difference equation we find that (with $v = \dot{x}$)

$$-h^{2}g(x) = h^{2}\ddot{x} + \frac{h^{4}}{12}x^{(4)} + \mathcal{O}(h^{6})$$

$$= h^{2}(f_{0} + h^{2}f_{2}) + \frac{h^{4}}{12}(f_{0,xx}(v,v) + 2f_{0,xv}(f_{0},v) + f_{0,x}f_{0} + f_{0,vv}(f_{0},f_{0}) + f_{0,v}f_{0,x}v + f_{0,v}f_{0,v}f_{0}) + \mathcal{O}(h^{6})$$

$$-h^{2}g(x) = h^{2}\ddot{x} + \frac{h^{4}}{12}x^{(4)} + \mathcal{O}(h^{6})$$

$$= h^{2}(f_{0} + h^{2}f_{2}) + \frac{h^{4}}{12}(f_{0,xx}(v,v) + 2f_{0,xv}(f_{0},v) + f_{0,x}f_{0} + f_{0,vv}(f_{0},f_{0}) + f_{0,v}f_{0,x}v + f_{0,v}f_{0,v}f_{0}) + \mathcal{O}(h^{6})$$

- ▶ The h^2 -term of this equation gives us $f_0(x, v) = -g(x)$. In particular, partial derivatives of f_0 with respect to v are zero.
- ▶ The h^4 -term then reduces to $f_2 = \frac{1}{12}(g_{xx}(v,v) g_x g)$.

We find that the modified equation is

$$\ddot{x} = -g(x) + \frac{h^2}{12}(g_{xx}(\dot{x},\dot{x}) - g_x g) + \mathcal{O}(h^4).$$

Question

From now on we consider Lagrangian equations

$$\mathcal{L} = \frac{1}{2} \left\langle \dot{x}, \dot{x} \right\rangle - U(x) \qquad \Rightarrow \qquad \ddot{x} = -U'(x)$$

and variational integrators.

Are their modified equations are Lagrangian as well?

The truncated modified equation from our Example

$$\ddot{x} = -U' + \frac{h^2}{12}(U'''(\dot{x},\dot{x}) - U''U').$$

is not an Euler-Lagrange equation.

However, we will see that it can be obtained from an EL equation by solving it for \ddot{x} and truncating the resulting power series.

General idea

Look for a modified Lagrangian $\mathcal{L}_{\text{mod}}(x,\dot{x})$ such that the discrete Lagrangian $L_{\rm disc}$ is its exact discrete Lagrangian, i.e.

$$\int_{(j-1)h}^{jh} \mathcal{L}_{\mathrm{mod}}(x(t),\dot{x}(t)) \mathrm{d}t = h L_{\mathrm{disc}}\big(x((j-1)h),x(jh)\big).$$

The Euler-Lagrange equation of \mathcal{L}_{mod} will then be the modified equation.

The best we can hope for is to find such a modified Lagrangian up to an error of arbitrarily high order.

We can write the discrete Lagrangian as a function of x and its derivatives, all evaluated at the point $jh - \frac{h}{2}$,

$$\mathcal{L}_{\mathrm{disc}}[x] :\simeq L_{\mathrm{disc}}\left(x - \frac{h}{2}\dot{x} + \frac{1}{2}\left(\frac{h}{2}\right)^2 \ddot{x} - \dots, \right.$$

$$\left. x + \frac{h}{2}\dot{x} + \frac{1}{2}\left(\frac{h}{2}\right)^2 \ddot{x} + \dots\right).$$

$$\simeq L_{\mathrm{disc}}(x_{j-1}, x_j)$$

Here and in the following:

- we evaluate at $t = jh \frac{h}{2}$ whenever we omit the variable t, i.e. $x := x \left(jh \frac{h}{2} \right)$,
- $x_i = x(jh) \text{ and } x_{i-1} = x((j-1)h).$

We want to write the discrete action

$$S_{\mathrm{disc}} = \sum_{j=1}^{n} h \mathcal{L}_{\mathrm{disc}}(x_{j-1}, x_{j}) \simeq \sum_{j=1}^{n} h \mathcal{L}_{\mathrm{disc}}\left[x\left(jh - \frac{h}{2}\right)\right]$$

as an integral.

Lemma

For any smooth function $f: \mathbb{R} \to \mathbb{R}^N$ we have

$$\begin{split} \sum_{j=1}^n h f\left(jh - \frac{h}{2}\right) &\simeq \int_0^{nh} \sum_{i=0}^\infty h^{2i} \left(2^{1-2i} - 1\right) \frac{B_{2i}}{(2i)!} f^{(2i)}(t) \, \mathrm{d}t \\ &\simeq \int_0^{nh} \left(f(t) - \frac{h^2}{24} \ddot{f}(t) + 7 \frac{h^4}{5760} f^{(4)}(t) + \ldots \right) \mathrm{d}t, \end{split}$$

where B; are the Bernoulli numbers.

Proof (sketch). The h^2 -term can easily be obtained by Taylor expansion. We have

$$\int_{0}^{h} f(t) dt = \int_{0}^{h} f\left(\frac{h}{2}\right) + \left(t - \frac{h}{2}\right) \dot{f}\left(\frac{h}{2}\right) + \frac{1}{2} \left(t - \frac{h}{2}\right)^{2} \ddot{f}\left(\frac{h}{2}\right) + \mathcal{O}(t^{3}) dt$$

$$= hf\left(\frac{h}{2}\right) + \frac{h^{3}}{24} \ddot{f}\left(\frac{h}{2}\right) + \mathcal{O}(h^{4})$$

$$= hf\left(\frac{h}{2}\right) + \int_{0}^{h} \frac{h^{2}}{24} \ddot{f}\left(\frac{h}{2}\right) dt + \mathcal{O}(h^{4})$$

$$= hf\left(\frac{h}{2}\right) + \int_{0}^{h} \frac{h^{2}}{24} \left(\ddot{f}(t) + \mathcal{O}(t)\right) dt + \mathcal{O}(h^{4})$$

$$= hf\left(\frac{h}{2}\right) + \int_{0}^{h} \frac{h^{2}}{24} \ddot{f}(t) dt + \mathcal{O}(h^{4}).$$

Two proof strategies:

iterate this.

use Euler-Maclaurin formula.

Definition

We call

$$\mathcal{L}_{\text{mod}}[x(t)] :\simeq \mathcal{L}_{\text{disc}}[x(t)] + \sum_{i=1}^{\infty} \left(2^{1-2i} - 1\right) \frac{h^{2i}B_{2i}}{(2i)!} \frac{\mathrm{d}^{2i}}{\mathrm{d}t^{2i}} \mathcal{L}_{\text{disc}}[x(t)]$$
$$\simeq \mathcal{L}_{\text{disc}}[x(t)] - \frac{h^2}{24} \frac{\mathrm{d}^2}{\mathrm{d}t^2} \mathcal{L}_{\text{disc}}[x(t)] + \frac{7h^4}{5760} \frac{\mathrm{d}^4}{\mathrm{d}t^4} \mathcal{L}_{\text{disc}}[x(t)] + \dots$$

the modified Lagrangian of $L_{\rm disc}$.

Lemma

$$\mathcal{L}_{\text{mod}}[x] = \mathcal{L}(x, \dot{x}) + \mathcal{O}(h).$$

Towards a first order Lagrangian

The modified Lagrangian

$$\mathcal{L}_{\mathrm{disc}}[x(t)] - \frac{h^2}{24} \frac{\mathrm{d}^2}{\mathrm{d}t^2} \mathcal{L}_{\mathrm{disc}}[x(t)] + \frac{7h^4}{5760} \frac{\mathrm{d}^4}{\mathrm{d}t^4} \mathcal{L}_{\mathrm{disc}}[x(t)] + \dots$$

is an asymptotic power series in h and contains derivatives $x^{(i)}$ of every order i.

For every truncation of the power series \mathcal{L}_{mod} we will construct an equivalent Lagrangian that is of first order, i.e. that depends only on x and \dot{x} .

For any $k \in \mathbb{N}$ we define first order Lagrangians

$$\mathcal{L}_{\text{mod},k}(x,\dot{x}) = \mathcal{L}_0(x,\dot{x}) + h\mathcal{L}_1(x,\dot{x}) + \ldots + h^k\mathcal{L}_k(x,\dot{x}),$$

where the coefficients $\mathcal{L}_i(x,\dot{x})$ will be defined recursively below.

Solve the Euler-Lagrange equation

$$\frac{\partial \mathcal{L}_0}{\partial x} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}_0}{\partial \dot{x}} + \ldots + h^k \left(\frac{\partial \mathcal{L}_k}{\partial x} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}_k}{\partial \dot{x}} \right) = 0$$

for \ddot{x} . This gives us an expression of the form

$$\ddot{x} = F_0^2(x, \dot{x}) + hF_1^2(x, \dot{x}) + \ldots + h^k F_k^2(x, \dot{x}) + \mathcal{O}(h^{k+1}).$$

Similar expressions for the higher derivatives follow

$$x^{(3)} = F_0^3(x, \dot{x}) + hF_1^3(x, \dot{x}) + \dots + h^k F_k^3(x, \dot{x}) + \mathcal{O}(h^{k+1}),$$

$$x^{(4)} = F_0^4(x, \dot{x}) + hF_1^3(x, \dot{x}) + \dots + h^k F_k^4(x, \dot{x}) + \mathcal{O}(h^{k+1}),$$

$$\vdots$$

We want that $\mathcal{L}_{\text{mod},k}(x,\dot{x}) = \mathcal{L}_{\text{mod}}[x] + \mathcal{O}(h^{k+1})$ for critical curves. This is the case if and only if for any k there holds

$$\begin{split} \mathcal{L}_{\mathrm{mod},k}\big(x,\dot{x}\big) &= \mathcal{L}_0\big(x,\dot{x}\big) + \ldots + h^k \mathcal{L}_k\big(x,\dot{x}\big) \\ &= \mathcal{L}_{\mathrm{mod}}[x] \bigg|_{\substack{\ddot{x} = F_0^2(x,\dot{x}) + \ldots + h^{k-1}F_{k-1}^2(x,\dot{x}) \\ x^{(3)} = F_0^3(x,\dot{x}) + \ldots + h^{k-1}F_{k-1}^3(x,\dot{x})}} + \mathcal{O}(h^{k+1}) \\ &= \mathcal{L}_{\mathrm{mod}}[x] \bigg|_{\text{EL equations of } \mathcal{L}_{\mathrm{mod},k-1}} + \mathcal{O}(h^{k+1}). \end{split}$$

This gives us a recurrence relation for the $\mathcal{L}_{\mathrm{mod},k}$.

(a) A curve $x : [a, b] \to \mathbb{R}$ is k-critical for some action $S = \int_a^b \mathcal{L} dt$ if for any variation of x there holds

$$\delta S = \mathcal{O}(h^{k+1} \|\delta x\|),$$

where $\|\delta x\| = \int_a^b |\delta x(t)| dt$ is the usual 1-norm.

(b) A discrete curve $(x_j)_j$ is k-critical for some action $S_{\rm disc} = \sum_j L_{\rm disc}(x_j, x_{j+1})$ if for any variation of $(x_j)_j$ there holds

$$\delta S = \mathcal{O}(h^{k+1} \| (\delta x_j)_j \|),$$

where $\|(\delta x_j)_j\| = \sum h |\delta x_j|$.

The scaling is chosen such that $\|\delta x\| = (1 + \mathcal{O}(h))\|(\delta x(jh))_j\|$.

We can characterize k-critical curves by the fact that they satisfy the Euler-Lagrange equations up to a certain order.

Lemma

- (a) A curve $x : [a, b] \to \mathbb{R}$ is k-critical for the action $S = \int_a^b \mathcal{L} dt$ if and only if it satisfies the corresponding Euler-Lagrange equations up to order k.
- (b) A discrete curve $(x_j)_j$ is k-critical for the action $S_{\mathrm{disc}} = \sum_j L_{\mathrm{disc}}(x_j, x_{j+1})$ if and only if it satisfies the corresponding discrete Euler-Lagrange equations up to order k.

Lemma

The Euler-Lagrange equations of $\mathcal{L}_{\mathrm{mod}}[x]$ and of the first order Lagrangian $\mathcal{L}_{\mathrm{mod},k}(x,\dot{x})$ are equivalent up to order k.

Proof. We need to show that both Lagrangians have the same k-critical curves,

$$C_k(\mathcal{L}_{\text{mod}}) = C_k(\mathcal{L}_{\text{mod},k}).$$

We use induction on k.

Obviously a curve is 0-critical for $\mathcal{L}_{\mathrm{mod}}[x]$ if and only if it is 0-critical for $\mathcal{L}_{\mathrm{mod},0}(x,\dot{x}) = \mathcal{T}_0\left(\mathcal{L}_{\mathrm{mod}}[x]\right)$.

Proof (continued). Now suppose that $\mathcal{C}_k(\mathcal{L}_{\mathrm{mod}}) = \mathcal{C}_k(\mathcal{L}_{\mathrm{mod},k})$ for some fixed k. The higher derivatives of $x \in \mathcal{C}_k(\mathcal{L}_{\mathrm{mod},k})$ are given by

$$\ddot{x} = F_0^2(x, \dot{x}) + \dots + h^k F_k^2(x, \dot{x}) + \mathcal{O}(h^{k+1}),$$

$$x^{(3)} = F_0^3(x, \dot{x}) + \dots + h^k F_k^3(x, \dot{x}) + \mathcal{O}(h^{k+1}),$$

$$\vdots$$

so we can conclude from the recurrence relation

$$\begin{split} \mathcal{L}_{\text{mod},k+1}(x,\dot{x}) &= \mathscr{L}_{0}\big(x,\dot{x}\big) + \ldots + h^{k+1}\mathscr{L}_{k+1}\big(x,\dot{x}\big) \\ &= \mathcal{L}_{\text{mod}}[x] \Big|_{\substack{\ddot{x} = F_{0}^{2}(\mathscr{L}_{0}) + \ldots + h^{k}F_{l}^{2}(\mathscr{L}_{0},\ldots,\mathscr{L}_{k}) \\ \dots}} + \mathcal{O}(h^{k+2}). \end{split}$$

that for any $x \in \mathcal{C}_k(\mathcal{L}_{\mathrm{mod},k})$,

$$\mathcal{L}_{\text{mod},k+1}(x,\dot{x}) = \mathcal{L}_{\text{mod}}[x] + \mathcal{O}(h^{k+2}).$$

Proof (continued). For every k-critical curve x we have

$$\int_a^b \mathcal{L}_{\mathrm{mod},k+1}(x(t),\dot{x}(t)) dt = \int_a^b \mathcal{L}_{\mathrm{mod}}[x(t)] dt + \mathcal{O}(h^{k+2}).$$

Now observe that:

- every (k+1)-critical curve for $\mathcal{L}_{\mathrm{mod}}$ is also a k-critical curve, i.e. $\mathcal{C}_{k+1}(\mathcal{L}_{\mathrm{mod}}) \subset \mathcal{C}_k(\mathcal{L}_{\mathrm{mod}})$.
- ullet $\mathcal{T}_k(\mathcal{L}_{\mathrm{mod},k+1}) = \mathcal{L}_{\mathrm{mod},k}$ so $\mathcal{C}_{k+1}(\mathcal{L}_{\mathrm{mod},k+1}) \subset \mathcal{C}_k(\mathcal{L}_{\mathrm{mod},k})$
- ▶ any sufficiently small variation of a k-critical curve is still k-critical.

To determine if a curve is (k + 1)-critical, it is sufficient to consider variations in the set of k-critical curves.

Therefore
$$C_{k+1}(\mathcal{L}_{\text{mod},k+1}) = C_{k+1}(\mathcal{L}_{\text{mod}})$$
.

Main result

Theorem

For a discrete Lagrangian $L_{\rm disc}$ that is a consistent discretization of some \mathcal{L} , the k-th truncation of the Euler-Lagrange equation of $\mathcal{L}_{{\rm mod},k}(x,\dot{x})$ is the k-th truncation of the modified equation.

Compare:

"This example illustrates that the modified equation corresponding to a separable Hamiltonian (i.e., H(p,q)=T(p)+U(q)) is in general not separable. Moreover, it shows that the modified equation of a second order differential equation $q''=\nabla U(q)$ (or equivalently, q'=p, $p'=\nabla U(q)$) is in general not a second order equation."

Hairer, Lubich, Wanner (2006), Example IX.3.4

- $\mathcal{L}_{\mathrm{mod},k}(x,\dot{x})$, truncated after order k. Consider the discrete curve $(x_j)_j:=(x(jh))_j$.
 - ▶ x is k-critical for the action $\int \mathcal{L}_{\text{mod},k}(x,\dot{x}) dt$.
 - ▶ By the Lemma, x is k-critical for the action $\int \mathcal{L}_{\text{mod}}[x] dt$.
 - ▶ By construction, the actions $S_{\text{disc}} = \sum_{j} L_{\text{disc}}(y(jh), y((j+1)h))$ and $S = \int_{a}^{b} \mathcal{L}_{\text{mod}}[y(t)] dt$ are equal for any smooth curve y.
 - ▶ Therefore the discrete curve $(x(jh))_j$ is k-critical for the discrete action S_{disc} . Hence

$$D_2L_{\operatorname{disc}}(x(t-h),x(t))+D_1L_{\operatorname{disc}}(x(t),x(t+h))=\mathcal{O}(h^{k+1}).$$

Example: Störmer-Verlet discretization

$$\begin{split} \mathcal{L}(x,\dot{x}) &= \frac{1}{2} \left\langle \dot{x} \,, \dot{x} \right\rangle - U(x) \\ L_{\mathrm{disc}}(x_j,x_{j+1}) &= \frac{1}{2} \left\langle \frac{x_{j+1} - x_j}{h} \,, \frac{x_{j+1} - x_j}{h} \right\rangle - \frac{1}{2} U\left(x_j\right) - \frac{1}{2} U\left(x_{j+1}\right). \end{split}$$

Its Euler-Lagrange equation is

$$\frac{x_{j+1}-2x_j+x_{j-1}}{h^2}=-U'(x_j).$$

We have

$$\mathcal{L}_{disc}[x] \simeq \left\langle \dot{x} + \frac{h^2}{24} x^{(3)} + \dots, \dot{x} + \frac{h^2}{24} x^{(3)} + \dots \right\rangle \\ - \frac{1}{2} U \left(x - \frac{h}{2} \dot{x} + \frac{1}{2} \left(\frac{h}{2} \right)^2 \ddot{x} - \dots \right) - \frac{1}{2} U \left(x + \frac{h}{2} \dot{x} + \frac{1}{2} \left(\frac{h}{2} \right)^2 \ddot{x} + \dots \right).$$

From this we calculate the modified Lagrangian,

$$\begin{split} \mathcal{L}_{\mathrm{mod}}[x] &= \mathcal{L}_{\mathrm{disc}}[x] - \frac{h^2}{24} \frac{\mathrm{d}^2}{\mathrm{d}t^2} \mathcal{L}_{\mathrm{disc}}[x] + \mathcal{O}(h^4) \\ &= \frac{1}{2} \left\langle \dot{x} , \dot{x} \right\rangle - U + \frac{h^2}{24} \left(\left\langle \dot{x} , x^{(3)} \right\rangle - 3U'\ddot{x} - 3U''(\dot{x}, \dot{x}) \right) \\ &- \frac{h^2}{24} \left(\left\langle \ddot{x} , \ddot{x} \right\rangle + \left\langle \dot{x} , x^{(3)} \right\rangle - U'\ddot{x} - U''(\dot{x}, \dot{x}) \right) + \mathcal{O}(h^4) \\ &= \frac{1}{2} \left\langle \dot{x} , \dot{x} \right\rangle - U + \frac{h^2}{24} \left(-\left\langle \ddot{x} , \ddot{x} \right\rangle - 2U'\ddot{x} - 2U''(\dot{x}, \dot{x}) \right) + \mathcal{O}(h^4). \end{split}$$

Eliminate second derivatives using $\ddot{x} = -U' + \mathcal{O}(h^2)$,

$$\mathcal{L}_{\mathrm{mod},3}(x,\dot{x}) = \frac{1}{2} \left\langle \dot{x},\dot{x} \right\rangle - U + \frac{h^2}{24} \left(U'U' - 2U''(\dot{x},\dot{x}) \right).$$

Observe that this Lagrangian is not separable for general U.

The corresponding Euler-Lagrange equation is

$$\begin{split} 0 &= -\ddot{x} - U' + \frac{h^2}{24} \left(2U''U' - 2U'''(\dot{x}, \dot{x}) + 4\frac{\mathrm{d}}{\mathrm{d}t} \left(U''\dot{x} \right) \right) \\ &= -\ddot{x} - U' + \frac{h^2}{24} \left(2U''U' - 2U'''(\dot{x}, \dot{x}) + 4U'''(\dot{x}, \dot{x}) + 4U'''\ddot{x} \right). \end{split}$$

Solving this for \ddot{x} we find the modified equation

$$\ddot{x} = -U' + \frac{h^2}{12} \left(U'''(\dot{x}, \dot{x}) - U''U' \right) + \mathcal{O}(h^4).$$

The Kepler problem

Potential:
$$U(x) = -\frac{1}{|x|}$$
.

$${\sf Lagrangian:} \,\, \mathcal{L} = \frac{1}{2} \, \langle \dot{x} \, , \dot{x} \rangle + \frac{1}{|x|}.$$

Equation of motion
$$\ddot{x} = -\frac{x}{|x|^3}$$
.

Störmer-Verlet discretization:

$$\frac{x_{j+1}-2x_j+x_{j-1}}{h^2}=-U'(x_j).$$

The modified Lagrangian of the Störmer-Verlet discretization is

$$\mathcal{L}_{\mathrm{mod},3}(x,\dot{x}) = rac{1}{2} \left\langle \dot{x}\,,\dot{x}
ight
angle - U + rac{h^2}{24} \left(U'U' - 2U''(\dot{x},\dot{x})
ight).$$

For the Kepler problem we have $U(x) = -\frac{1}{|x|}$, hence

$$\mathcal{L}_{\text{mod},3}(x,\dot{x}) = \langle \dot{x},\dot{x} \rangle + \frac{1}{|x|} + \frac{h^2}{24} \left(\frac{1}{|x|^4} - 2 \frac{\langle \dot{x},\dot{x} \rangle}{|x|^3} + 6 \frac{\langle x,\dot{x} \rangle^2}{|x|^5} \right).$$

Up to higher order terms, we can consider this as a perturbation of the potential:

$$\mathcal{L}_{\text{mod},3}(x,\dot{x}) = \langle \dot{x}, \dot{x} \rangle + \frac{1}{|x|} + \frac{h^2}{24} \left(\frac{9}{|x|^4} + 8 \frac{\mathbb{E}}{|x|^3} - 6 \frac{\mathbb{L}^2}{|x|^5} \right) + \mathcal{O}(h^4),$$

where $\mathbb E$ and $\mathbb L$ are the constant energy and angular momentum of the unperturbed problem.

From Hamiltonian perturbation theory:

Lemma

The precession rate (in radians per period) for the perturbed Lagrangian

$$\mathcal{L} = \frac{1}{2} \left\langle \dot{x}, \dot{x} \right\rangle + \frac{1}{|x|} + \Delta U(x),$$

is given in first order approximation by

$$2\pi a^2 \frac{\partial \langle \Delta U(x) \rangle}{\partial b}$$
,

where a and b are the semimajor and semiminor axes of the orbit respectively, and $\langle \cdot \rangle$ denotes the time-average along the unperturbed orbit.

Proposition

The numerical precession rate of the Störmer-Verlet method is

$$\frac{\pi}{24} \left(15 \frac{a^3}{b^6} - 3 \frac{a}{b^4} \right) h^2 + \mathcal{O}(h^4)$$

Predicted: 0.0673 rad per revolution.

Measured: 0.0659 rad per revolution.

The numerical precession rate of the midpoint rule is

$$-rac{\pi}{12}\left(15rac{a^3}{b^6}-3rac{a}{b^4}
ight)h^2+\mathcal{O}(h^4)$$

Predicted:
-0.134 rad
per revolution.

Measured: -0.152 rad

-0.152 rad per revolution.

Let's look at those expressions again

Störmer-Verlet:
$$\frac{\pi}{24} \left(15 \frac{a^3}{b^6} - 3 \frac{a}{b^4} \right) h^2 + \mathcal{O}(h^4)$$

Midpoint rule:
$$-\frac{\pi}{12} \left(15 \frac{a^3}{b^6} - 3 \frac{a}{b^4} \right) h^2 + \mathcal{O}(h^4)$$

Proposition

The numerical precession rate of the method with Lagrangian

$$L(x_j, x_{j+1}) = \frac{2}{3}L_{SV}(x_j, x_{j+1}) + \frac{1}{3}L_{MP}(x_j, x_{j+1})$$

is of order $\mathcal{O}(h^4)$.

This is an implicit method, given by

$$\begin{aligned} x_{j+1} - 2x_j + x_{j-1} \\ &= -\frac{2h^2}{3}U'(x_j) - \frac{h^2}{6}U'\left(\frac{x_{j-1} + x_j}{2}\right) - \frac{h^2}{6}U'\left(\frac{x_j + x_{j+1}}{2}\right). \end{aligned}$$

Other options: compose two Störmer-Verlet-steps with one midpoint-step

- ► Either on the level of second order difference equations $(x_{i-1}, x_i) \mapsto (x_i, x_{i+1}),$
- ▶ or on the level of a symplectic map $(x_j, p_j) \mapsto (x_{j+1}, p_{j+1}).$

They are not equivalent because the Legendre transformation depends on the ever-changing Lagrangian.

This is an implicit method, given by

$$\begin{aligned} x_{j+1} - 2x_j + x_{j-1} \\ &= -\frac{2h^2}{3}U'(x_j) - \frac{h^2}{6}U'\left(\frac{x_{j-1} + x_j}{2}\right) - \frac{h^2}{6}U'\left(\frac{x_j + x_{j+1}}{2}\right). \end{aligned}$$

Other options: compose two Störmer-Verlet-steps with one midpoint-step

- Either on the level of second order difference equations (x_{i-1}, x_i) → (x_i, x_{i+1}),
- ▶ or on the level of a symplectic map $(x_i, p_i) \mapsto (x_{i+1}, p_{i+1}).$

They are not equivalent because the Legendre transformation depends on the ever-changing Lagrangian.

Summary

- ► Truncations of the modified equations are not Euler-Lagrange equations.
- ▶ But they are truncations of EL equations solved for \ddot{x} .
- ▶ Obtaining a high-order modified Lagrangian $\mathcal{L}_{\text{mod}}[x]$ is relatively straighforward.
- ▶ From $\mathcal{L}_{\text{mod}}[x]$ a first order Lagrangians $\mathcal{L}_{\text{mod},k}(x,\dot{x})$ can be found recursively.
- Standard perturbation theory applied to these Lagrangians can lead us to better integrators.

Reference. Mats Vermeeren. Modified Equations for Variational Integrators. arXiv:1505.05411 [math.NA]