Pluri-Lagrangian systems

(a.k.a. Lagrangian multiform systems)

Mats Vermeeren

Technische Universität Berlin

June 8, 2017
ISQS 25, Prague

(1) Discrete pluri-Lagrangian systems
(2) Continuous pluri-Lagrangian systems
(3) Relations

- to Hamiltonian formalism
- between continuous and discrete
- to variational symmetries

Main question

Many integrable systems (Toda lattice, KdV equation,...) come with infinite hierarchies. Each individual equation is Lagrangian/Hamiltonian.

On the Hamiltonian side, a compatibility condition is easy to state: $\left\{H_{i}, H_{j}\right\}=0$.

What about the Lagrangian side?

Is there a variational description of an integrable hierarchy?

(1) Discrete pluri-Lagrangian systems

(2) Continuous pluri-Lagrangian systems
(3) Relations

- to Hamiltonian formalism
- between continuous and discrete
- to variational symmetries

Quad equations

Quad equation on \mathbb{Z}^{2} :

$$
Q\left(x, x_{1}, x_{2}, x_{12}, \alpha_{1}, \alpha_{2}\right)=0
$$

Subscripts of x denote lattice shifts, α_{1}, α_{2} are parameters.
Invariant under symmetries of the square,
 affine in each of x, x_{1}, x_{2}, x_{12}.

Integrability for systems quad equations:
Multi-dimensional consistency of

$$
Q\left(x, x_{i}, x_{j}, x_{i j}, \alpha_{i}, \alpha_{j}\right)=0,
$$

i.e. the three ways of calculating x_{123} give the same result.

Quad equations

- Classification multidimensionally consistent quad equations in the ABS list.
[VE Adler, AI Bobenko, YB Suris. Classification of integrable equations on quad-graphs. The consistency approach. Commun. Math. Phys. 2003.]
- Variational formulation in which the Lagrangian is "an extended object capable of producing a multitude of consistent equations" \hookrightarrow i.e. defined in the higher-dimensional lattice
[S Lobb, F Nijhoff. Lagrangian multiforms and multidimensional consistency. J. Phys. A. 2009.]

Pluri-Lagrangian problem

For some discrete 2-form

$$
\mathcal{L}\left(\sigma_{i j}\right)=\mathcal{L}\left(x, x_{i}, x_{j}, x_{i j}, \alpha_{i}, \alpha_{j}\right)
$$

find a field $x: \mathbb{Z}^{N} \rightarrow \mathbb{C}$ such that the action

$$
\sum_{\sigma_{i j} \in S} \mathcal{L}\left(\sigma_{i j}\right)
$$

is critical on all discrete 2-surfaces S in \mathbb{Z}^{N} simultaneously.

Furthermore, the critical value of the action does not depend on the surface, i.e. the discrete 2 -form \mathcal{L} is closed on solutions.

Example: H1 (lattice potential KdV)

$$
\left(x-x_{i j}\right)\left(x_{i}-x_{j}\right)-\alpha_{i}+\alpha_{j}=0
$$

we have the Lagrangian

$$
\mathcal{L}\left(x, x_{i}, x_{j}, x_{i j}, \alpha_{i}, \alpha_{j}\right)=\left(x_{i}-x_{j}\right) x-\left(\alpha_{i}-\alpha_{i}\right) \log \left(x_{i}-x_{j}\right)
$$

All surfaces can be build out of elementary corners:

(a) $x_{i j}-x_{i k}-\frac{\alpha_{i}-\alpha_{k}}{x_{i}-x_{k}}+\frac{\alpha_{i}-\alpha_{j}}{x_{i}-x_{j}}=0$,
(b) $x_{i}-x_{j}-\frac{\alpha_{j}-\alpha_{k}}{x_{i j}-x_{i k}}+\frac{\alpha_{i}-\alpha_{k}}{x_{i j}-x_{j k}}=0$

(1) Discrete pluri-Lagrangian systems

(2) Continuous pluri-Lagrangian systems
(3) Relations

- to Hamiltonian formalism
- between continuous and discrete
- to variational symmetries

Pluri-Lagrangian 2-forms

Given a 2-form

$$
\mathcal{L}=\sum_{i, j} L_{i j}[u] \mathrm{d} t_{i} \wedge \mathrm{~d} t_{j}
$$

find a field $u: \mathbb{R}^{N} \rightarrow \mathbb{C}$, such that $\int_{\Gamma} \mathcal{L}$ is critical on all smooth 2-surfaces Γ in multi-time \mathbb{R}^{N}.

Possible for any dimension: given a d-form

$$
\mathcal{L}=\sum_{i_{1}, \ldots, i_{d}} L_{i_{1} \ldots i_{d}}[u] \mathrm{d} t_{i_{1}} \wedge \ldots \wedge \mathrm{~d} t_{i_{d}} .
$$

find u such that $\int_{\Gamma} \mathcal{L}$ is critical on all smooth d-surfaces Γ in \mathbb{R}^{N}.

Warm-up: $d=1$
Consider a Lagrangian 1-form $\mathcal{L}=\sum_{i} L_{i}[u] \mathrm{d} t_{i}$

Lemma

If the action $\int_{S} \mathcal{L}$ is critical on all stepped curves S in \mathbb{R}^{N}, then it is critical on all smooth curves.

Proof

$$
\int_{\Gamma} \mathcal{L}-\int_{S} \mathcal{L}=\int_{M} \mathrm{~d} \mathcal{L},
$$

where $\partial M=\Gamma \cup S$. By choosing a fine approximation, M can be made arbitrarily small.

Variations are local, so it is sufficient to look at a general L-shaped curve $S=S_{i} \cup S_{j}$.

Multi-time EL equations for the 1 -form case

The variation of the action on S_{i} is

$$
\begin{aligned}
\delta \int_{S_{i}} L_{i} \mathrm{~d} t_{i} & =\int_{S_{i}} \sum_{l} \frac{\partial L_{i}}{\partial u_{l}} \delta u_{l} \mathrm{~d} t_{i} \\
& =\int_{S_{i}} \sum_{l \ngtr t_{i}} \frac{\delta_{i} L_{i}}{\delta u_{l}} \delta u_{l} \mathrm{~d} t_{i}+\left.\sum_{l} \frac{\delta_{i} L_{i}}{\delta u_{l t_{i}}} \delta u_{l}\right|_{p}
\end{aligned}
$$

where I denotes a multi-index, and

$$
\frac{\delta_{i} L_{i}}{\delta u_{I}}=\sum_{\alpha=0}^{\infty}(-1)^{\alpha} \frac{\mathrm{d}^{\alpha}}{\mathrm{d} t_{i}^{\alpha}} \frac{\partial L_{i}}{\partial u_{I t_{i}^{\alpha}}}=\frac{\partial L_{i}}{\partial u_{I}}-\frac{\mathrm{d}}{\mathrm{~d} t_{i}} \frac{\partial L_{i}}{\partial u_{I t_{i}}}+\frac{\mathrm{d}^{2}}{\mathrm{~d} t_{i}^{2}} \frac{\partial L_{i}}{\partial u_{l t_{i}^{2}}}-\ldots
$$

Multi-time Euler-Lagrange equations for $\mathcal{L}=\sum_{i} L_{i}[u] \mathrm{d} t_{i}$

$$
\frac{\delta_{i} L_{i}}{\delta u_{I}}=0 \quad \forall I \not \supset t_{i} \quad \text { and } \quad \frac{\delta_{i} L_{i}}{\delta u_{I_{t_{i}}}}=\frac{\delta_{j} L_{j}}{\delta u_{I t_{j}}} \quad \forall I,
$$

$d=2$

Consider a Lagrangian 2-form

$$
\mathcal{L}=\sum_{i, j} L_{i j}[u] \mathrm{d} t_{i} \wedge \mathrm{~d} t_{j}
$$

It is sufficient to look at stepped surfaces and their elementary corners.

$d=2$

Multi-time EL equations for $\mathcal{L}=\sum_{i, j} L_{i j}[u] \mathrm{d} t_{i} \wedge \mathrm{~d} t_{j}$

$$
\begin{array}{lr}
\frac{\delta_{i j} L_{i j}}{\delta u_{l}}=0 & \forall I \not \nexists t_{i}, t_{j}, \\
\frac{\delta_{i j} L_{i j}}{\delta u_{l_{t}}}=\frac{\delta_{i k} L_{i k}}{\delta u_{l_{k}}} & \forall I \not \nexists t_{i}, \\
\frac{i_{j i} L_{i j}}{\delta u_{t_{i j} t_{j}}}+\frac{\delta_{j k} L_{j k}}{\delta u_{l_{t j} t_{k}}}+\frac{\delta_{k i} L_{k i}}{\delta u_{l_{t_{k} t_{i}}}}=0 & \forall I .
\end{array}
$$

Where

$$
\frac{\delta_{i j} L_{i j}}{\delta u_{l}}=\sum_{\alpha=0}^{\infty} \sum_{\beta=0}^{\infty}(-1)^{\alpha+\beta} \frac{\mathrm{d}^{\alpha}}{\mathrm{d} t_{i}^{\alpha}} \frac{\mathrm{d}^{\beta}}{}{ }^{\beta} t_{j}^{\beta} \frac{\partial L_{i j}}{\partial u_{l t_{i}^{\alpha} t_{j}^{\beta}}}
$$

[YB Suris, MV. On the Lagrangian structure of integrable hierarchies. In AI Bobenko (ed): Advances in Discrete Differential Geometry, Springer. 2016.]

Example: Potential KdV hierarchy

$$
\begin{aligned}
& u_{t_{2}}=g_{2}[u]=u_{x x x}+3 u_{x}^{2} \\
& u_{t_{3}}=g_{3}[u]=u_{x x x x x}+10 u_{x} u_{x x x}+5 u_{x x}^{2}+10 u_{x}^{3},
\end{aligned}
$$

where we identify $t_{1}=x$.
The differentiated equations $u_{x t_{i}}=\frac{\mathrm{d}}{\mathrm{d} x} g_{i}[u]$ are Lagrangian with

$$
\begin{aligned}
& L_{12}=\frac{1}{2} u_{x} u_{t_{2}}-\frac{1}{2} u_{x} u_{x x x}-u_{x}^{3}, \\
& L_{13}=\frac{1}{2} u_{x} u_{t_{3}}-u_{x} u_{x x x x x}-2 u_{x x} u_{x x x x}-\frac{3}{2} u_{x x x}^{2}+5 u_{x}^{2} u_{x x x}+5 u_{x} u_{x x}^{2}+\frac{5}{2} u_{x}^{4} .
\end{aligned}
$$

But we also need a coefficient L_{23} to define a 2-form

$$
\mathcal{L}=L_{12}[u] \mathrm{d} t_{1} \wedge \mathrm{~d} t_{2}+L_{13}[u] \mathrm{d} t_{1} \wedge \mathrm{~d} t_{3}+L_{23}[u] \mathrm{d} t_{2} \wedge \mathrm{~d} t_{3}
$$

Example: Potential KdV hierarchy

We choose L_{23} such that

$$
\mathcal{L}=L_{12}[u] \mathrm{d} t_{1} \wedge \mathrm{~d} t_{2}+L_{13}[u] \mathrm{d} t_{1} \wedge \mathrm{~d} t_{3}+L_{23}[u] \mathrm{d} t_{2} \wedge \mathrm{~d} t_{3}
$$

is closed on solutions. We can take it in the form

$$
L_{23}=\frac{1}{2}\left(u_{t_{2}} g_{3}-u_{t_{3}} g_{2}\right)+\left(a_{23}-a_{32}\right)-\frac{1}{2}\left(b_{23}-b_{32}\right)
$$

where

- $a_{i j}:=u_{t_{j}} \frac{\delta_{1} h_{i}}{\delta u_{x}}+u_{x t_{j}} \frac{\delta_{1} h_{i}}{\delta u_{x x}}+u_{x x t_{j}} \frac{\delta_{1} h_{i}}{\delta u_{x x x}}+\ldots$, where $h_{i}=\frac{1}{4 i+2} g_{i+1}$.
- $b_{i j}$ is a polynomial in $u, u_{x}, u_{x x}, \ldots$ such that $\mathrm{D}_{x} b_{i j}=g_{j} \mathrm{D}_{x} g_{i}$.

The closedness condition implies that

- the action $\int_{S} \mathcal{L}$ is independent of perturbations of the surface S,
- the flows are variational symmetries of each other.

Example: Potential KdV hierarchy

- The equations

$$
\frac{\delta_{12} L_{12}}{\delta u}=0 \quad \text { and } \quad \frac{\delta_{13} L_{13}}{\delta u}=0
$$

are

$$
u_{x t_{2}}=\frac{\mathrm{d}}{\mathrm{~d} x} g_{2}[u] \quad \text { and } \quad u_{x t_{3}}=\frac{\mathrm{d}}{\mathrm{~d} x} g_{3}[u] .
$$

- The equations

$$
\frac{\delta_{12} L_{12}}{\delta u_{x}}=\frac{\delta_{32} L_{32}}{\delta u_{t_{3}}} \quad \text { and } \quad \frac{\delta_{13} L_{13}}{\delta u_{x}}=\frac{\delta_{23} L_{23}}{\delta u_{t_{2}}}
$$

yield

$$
u_{t_{2}}=g_{2} \quad \text { and } \quad u_{t_{3}}=g_{3},
$$

- All other multi-time EL equations are corollaries of these.

(1) Discrete pluri-Lagrangian systems

(2) Continuous pluri-Lagrangian systems
(3) Relations

- to Hamiltonian formalism
- between continuous and discrete
- to variational symmetries

Relation to Hamiltonian formalism

Consider a pluri-Lagrangian two form $\sum_{i, j} L_{i j} \mathrm{~d} t_{i} \wedge \mathrm{~d} t_{j}$ with

$$
L_{1 j}=\frac{1}{2} u_{x} u_{t_{j}}-h_{1 j}\left(u_{x}, u_{x x}, \ldots\right)
$$

and such that the multi-time Euler-Lagrange equations are

$$
u_{t_{j}}=g_{j}\left(u_{x}, u_{x x}, \ldots\right) \quad \text { with } g_{j}=\frac{\delta_{1} h_{1 j}}{\delta u_{x}}
$$

This equation is Hamiltonian with Hamilton function $h_{1 j}$ w.r.t. the Gardner-Zakharov-Faddeev Poisson bracket

$$
\{F, G\}_{1}=-\frac{\delta_{1} F}{\delta u} \frac{\delta_{1} G}{\delta u_{x}}=\frac{\delta_{1} F}{\delta u} \mathrm{D}_{x}^{-1} \frac{\delta_{1} G}{\delta u}
$$

on equivalence classes modulo x-derivatives.

Relation to Hamiltonian formalism

In fact there is a whole family of brackets:

$$
\{F, G\}_{i}=\frac{\delta_{i} F}{\delta u} \mathrm{D}_{i}^{-1} \frac{\delta_{i} G}{\delta u}
$$

on equivalence classes modulo t_{1}, \ldots, t_{N}-derivatives.
For

$$
h_{i j}=\frac{1}{2} u_{t_{i}} u_{t_{j}}-L_{i j}
$$

there holds

$$
\forall i, j: \quad u_{t_{j}}=\left\{u, h_{i j}\right\}_{i}
$$

If the pluri-Lagrangian two form $\sum_{i, j} L_{i j} \mathrm{~d} t_{i} \wedge \mathrm{~d} t_{j}$ is closed on solutions, then the Hamiltonians are "in involution":

$$
\left\{h_{i j}, h_{i k}\right\}_{i}=0 \quad \forall i, j, k
$$

Discrete meets continuous

Quad equations like the lattice pKdV have two interpretations.

$$
\left(U-U_{i j}\right)\left(U_{i}-U_{j}\right)-\lambda_{i}+\lambda_{j}=0, \quad U=U\left(n_{1}, \ldots, n_{N}\right)
$$

	Discrete	Continuous
U	dependent variable	dependent variable
$n_{i} \in \mathbb{Z}$	independent variables	parameters
$\lambda_{i} \in \mathbb{R}$	paramters	independent variables

But there is also a different way to pass from discrete to continuous,

Continuum limit				
U		u	dependent variable	
n_{i}	\rightarrow	t_{j}	independent variables	
λ_{i}		-	no parameters	

which yields a hierarchy of differential equations for $u\left(t_{1}, \ldots, t_{N}\right)$.

Continuum limits

From H 1 (lattice pKdV) the whole pKdV hierarchy can be obtained.
[GL Wiersma, HW Capel. Lattice equations, hierarchies and Hamiltonian structures. Physica A. 1987]

The pluri-Lagrangian structure survives this limit:

$$
\text { discrete Lagrangian 2-form } \rightarrow \text { continuous Lagrangian 2-form }
$$

The same is true for Q1 (discrete cross-ratio equation), which produces the Schwarzian KdV hierarchy.
[MV. Continuum limits of pluri-Lagrangian systems. in preparation]

Is there a 1 to 1 correspondence between discrete and continuous pluri-Lagrangian systems?

Relation to variational symmetries

Consider a mechanical Lagrangian $L\left(q, q_{t}\right)$.
We say that a (generalized) vector field $V\left(q, q_{t}\right)$ is a variational symmetry if there exists a function $F\left(q, q_{t}\right)$, called the flux, such that

$$
\mathrm{D}_{V} L\left(q, q_{t}\right)-\mathrm{D}_{t} F\left(q, q_{t}\right)=0
$$

Noether's Theorem
If $V\left(q, q_{t}\right)$ is a variational symmetry with flux $F\left(q, q_{t}\right)$, then

$$
J\left(q, q_{t}\right)=\frac{\partial L\left(q, q_{t}\right)}{\partial q_{t}} V\left(q, q_{t}\right)-F\left(q, q_{t}\right)
$$

is an integral of motion.

Relation to variational symmetries

If we have a variational symmetry V with flux F and Noether integral J, then there is a pluri-Lagrangian 1-form

$$
\mathcal{L}=L_{1}\left(q, q_{t_{1}}, q_{t_{2}}\right) \mathrm{d} t_{1}+L_{2}\left(q, q_{t_{1}}, q_{t_{2}}\right) \mathrm{d} t_{2}
$$

with

$$
\begin{aligned}
& L_{1}\left(q, q_{t_{1}}, q_{t_{2}}\right)=L\left(q, q_{t_{1}}\right) \\
& L_{2}\left(q, q_{t_{1}}, q_{t_{2}}\right)=\frac{\partial L\left(q, q_{t_{1}}\right)}{\partial q_{t_{1}}}\left(q_{t_{2}}-V\left(q, q_{t_{1}}\right)\right)+F\left(q, q_{t_{1}}\right)
\end{aligned}
$$

which produces the equations of motion

$$
\frac{\partial L}{\partial q}-\frac{\mathrm{d}}{\mathrm{~d} t_{1}} \frac{\partial L}{\partial q_{t_{1}}}=0 \quad \text { and } \quad q_{t_{2}}=V\left(q, q_{t_{1}}\right)
$$

Can be extended to more dimensions if more variational symmetries exist.
[M Petrera, YB Suris. Variational symmetries and pluri-Lagrangian systems in classical mechanics. In preparation.]

Quantization

- Discrete action for $d=1 \rightarrow$ propagator in multi-time

Worked out for harmonic oscillator in:
[SD King, FW Nijhoff. Quantum Variational Principle and quantum multiform structure: the case of quadratic Lagrangians.
arXiv:1702.08709.]

- Continuous 1-form case \rightarrow path integrals in multi-time ?
- QFT ?

Selected references

- VE Adler, AI Bobenko, YB Suris. Classification of integrable equations on quad-graphs. The consistency approach. Commun. Math. Phys. 2003.
- S Lobb, F Nijhoff. Lagrangian multiforms and multidimensional consistency. J. Phys. A. 2009.
- R Boll, M Petrera, YB Suris. What is integrability of discrete variational systems? Proc. R. Soc. A. 2014.
- J Hietarinta, N Joshi, FW Nijhoff. Discrete Systems and Integrability. (Chapter 12) Cambridge Texts in Applied Mathematics. 2016.
- YB Suris, MV. On the Lagrangian structure of integrable hierarchies. In AI Bobenko (ed): Advances in Discrete Differential Geometry, Springer. 2016.
- SD King, FW Nijhoff. Quantum Variational Principle and quantum multiform structure: the case of quadratic Lagrangians. arXiv:1702.08709.
- MV. Continuum limits of pluri-Lagrangian systems. in preparation

