What is... an integrable system?

Mats Vermeeren

PhD Colloquium

April 23, 2019

MATH $^{+}$

Discretization in Geometry and Dynamics SFB Transregio 109

Table Of Contents

(1) Introduction
(2) Hamiltonian Systems
(3) Lax Pairs
(4) The $K d V$ equation
(5) Discrete integrable systems

Table of Contents

(1) Introduction

(2) Hamiltonian Systems
(3) Lax Pairs
(4) The KdV equation
(5) Discrete integrable systems

The "system" in "integrable system" can be

- a set of differential equations (ordinary or partial)

https://sites.google.com/site/ablowitz/
a set of difference equations
- a geometric object, e.g. a constant negative curvature surface

en.wikipedia.org/wiki/Dini\'s_surface

https://doi.org/10.1007/s00454-016-9802-6

Usually discribed by differential/difference equations.

Linear vs nonlinear differential equations

Linear equations are exactly solvable:

$$
\begin{aligned}
\ddot{x}(t) & =-x(t)-\beta \dot{x}(t) \\
& \downarrow \\
x(t) & =e^{-\frac{\beta}{2} t} \cos \left(\sqrt{1-\frac{\beta}{4}} t\right)
\end{aligned}
$$

Linear vs nonlinear differential equations

Linear equations are exactly solvable:

$$
\begin{aligned}
\ddot{x}(t) & =-x(t)-\beta \dot{x}(t) \\
& \downarrow
\end{aligned}
$$

$$
x(t)=e^{-\frac{\beta}{2} t} \cos \left(\sqrt{1-\frac{\beta}{4}} t\right)
$$

Even if we add a nonlinear forcing, the (limit) behavior is very simple.

$$
\ddot{x}(t)=-\dot{x}(t)-x(t)+0.8 \cos t
$$

Linear vs nonlinear differential equations

$$
\ddot{x}(t)=-\dot{x}(t)-x(t)+0.8 \cos t
$$

Linear vs nonlinear differential equations

$$
\ddot{x}(t)=-\dot{x}(t)-x(t)+0.8 \cos t
$$

$$
\ddot{x}(t)=-\dot{x}(t)+x(t)-x(t)^{3}+0.8 \cos t
$$

Linear vs nonlinear differential equations

Linear equations are boring
https://commons.wikimedia.org/wiki/File:
Wave_packet_(no_dispersion).gif

Nonlinear equations are difficult
http://www.physics.umb.edu/Staff/olchanyi_research/images/
saw-Gordon__movie.gif

Integrable systems: nonlinear equations that pretend to be linear https://commons.wikimedia.org/wiki/Category: Solitons\#/media/File:KdV_Solitons2.gif

"Integrable"

Heuristic I

A nonlinear system is integrable if it behaves almost like a linear system.

If an equation is related to a linear system, it can often be solved exactly.

Historic meaning

- 19th century: exactly solvable.
- Modern: surprising structure, that can help solve the system.

Table of Contents

(1) Introduction

(2) Hamiltonian Systems

44 The $K d V$ equation
(5) Discrete integrable systems

Hamiltonian Systems

Hamilton function

$$
H: \mathbb{R}^{2 N} \cong T^{*} Q \rightarrow \mathbb{R}:(q, p) \mapsto H(q, p)
$$

determines dynamics:

$$
\dot{q}_{i}=\frac{\partial H}{\partial p_{i}} \quad \text { and } \quad \dot{p}_{i}=-\frac{\partial H}{\partial q_{i}}
$$

If $H=\frac{1}{2 m} p^{2}+U(q)$, then we find Newton's laws:

$$
\dot{q}=\frac{1}{m} p \quad \text { and } \quad \dot{p}=-\nabla U(q)
$$

Geometric interpretation:

- Phase space $T^{*} Q$ with canonical symplectic 2-form ω
- flow along vector field X_{H} determined by $\iota X_{H} \omega=\mathrm{d} H$
- the flows consists of symplectic maps and preserves H.

Poisson Brackets

Poisson bracket of two functionals on $T^{*} Q$:

$$
\{f, g\}=\sum_{i=1}^{N}\left(\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}}\right)
$$

Dynamics of a Hamiltonian system:

$$
\dot{q}_{i}=\left\{q_{i}, H\right\}, \quad \dot{p}_{i}=\left\{p_{i}, H\right\}, \quad \frac{\mathrm{d}}{\mathrm{~d} t} f(q, p)=\{f(q, p), H\}
$$

Properties:
anti-symmetry: $\{f, g\}=-\{g, f\}$
bilinearity: $\{f, g+\lambda h\}=\{f, g\}+\lambda\{f, h\}$
Leibniz property: $\{f, g h\}=\{f, g\} h+g\{f, h\}$
Jacobi identity: $\{f,\{g, h\}\}+\{g,\{h, f\}\}+\{h,\{f, g\}\}=0$

Liouville-Arnold integrability

What if $H(p, q)=H(p)$?

$$
\dot{p_{j}}=-\frac{\partial H}{\partial q_{j}}=0 \quad \text { and } \quad \dot{q}_{j}=\frac{\partial H}{\partial p_{j}}=\omega_{j}(p)=\text { const }
$$

Liouville-Arnold integrability

What if $H(p, q)=H(p)$?

$$
\dot{p}_{j}=-\frac{\partial H}{\partial q_{j}}=0 \quad \text { and } \quad \dot{q}_{j}=\frac{\partial H}{\partial p_{j}}=\omega_{j}(p)=\text { const }
$$

A Hamiltonian system with Hamilton function $H: \mathbb{R}^{2 N} \rightarrow \mathbb{R}$ is Liouville-Arnold integrable if there exist N functionally independent Hamilton functions $H=H_{1}, H_{2}, \ldots H_{N}$ such that $\left\{H_{i}, H_{j}\right\}=0$.

This implies that

- each H_{i} is a conserved quantity for all flows.
- the dynamics is confined to a leaf of the foliation $\left\{H_{i}=\right.$ const $\}$.
- the flows commute.
- There exists a symplectic change of variables $(p, q) \mapsto(\bar{p}, \bar{q})$ such that

$$
H(p, q)=\bar{H}_{i}(\bar{p})
$$

Liouville-Arnold integrable systems evolve linearly in these variables! (\bar{p}, \bar{q}) are called action-angle variables.

Example: Kepler problem

Physical Hamiltonian: energy
$H_{2}=\frac{1}{2}|p|^{2}-\frac{1}{|q|}$
$\Rightarrow\left\{\begin{array}{l}\dot{q}=p \\ \dot{p}=-\frac{q}{|q|^{3}}\end{array}\right.$

Additional Hamiltonian: angular momentum

$$
\begin{aligned}
& H_{1}=p^{T}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) q \\
& \Rightarrow\left\{\begin{array}{l}
\dot{q}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) q \\
\dot{p}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) p
\end{array}\right.
\end{aligned}
$$

Example: Kepler problem

Physical Hamiltonian: energy

$$
H_{2}=\frac{1}{2}|p|^{2}-\frac{1}{|q|}
$$

$$
\Rightarrow\left\{\begin{array}{l}
\dot{q}=p \\
\dot{p}=-\frac{q}{|q|^{3}}
\end{array}\right.
$$

Additional Hamiltonian: angular momentum

$$
\begin{aligned}
& H_{1}=p^{T}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) q \\
& \Rightarrow\left\{\begin{array}{l}
\dot{q}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) q \\
\dot{p}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) p
\end{array}\right.
\end{aligned}
$$

q and p are functions of two times $\left(t_{1}, t_{2}\right)$.
t_{2} : physical evolution

Example: Kepler problem

Physical Hamiltonian: energy
$H_{2}=\frac{1}{2}|p|^{2}-\frac{1}{|q|}$
$\Rightarrow\left\{\begin{array}{l}\dot{q}=p \\ \dot{p}=-\frac{q}{|q|^{3}}\end{array}\right.$
Additional Hamiltonian: angular momentum

$$
\begin{aligned}
& H_{1}=p^{T}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) q \\
& \Rightarrow\left\{\begin{array}{l}
\dot{q}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) q \\
\dot{p}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) p
\end{array}\right.
\end{aligned}
$$

q and p are functions of two times $\left(t_{1}, t_{2}\right)$.

Example: Kepler problem

Physical Hamiltonian: energy

$$
H_{2}=\frac{1}{2}|p|^{2}-\frac{1}{|q|}
$$

$$
\Rightarrow\left\{\begin{array}{l}
\dot{q}=p \\
\dot{p}=-\frac{q}{|q|^{3}}
\end{array}\right.
$$

Additional Hamiltonian: angular momentum

$$
\begin{aligned}
& H_{1}=p^{T}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) q \\
& \Rightarrow\left\{\begin{array}{l}
\dot{q}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) q \\
\dot{p}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) p
\end{array}\right.
\end{aligned}
$$

More heuristics

Heuristic II

A system is integrable if it has many conserved quantities (and these conserved quantities are in involution)

Liouville-Arnold: conserved quantities lead to hidden linear structure

Heuristic III

A system is integrable if it is part of a sufficiently large family of compatible equations

Noether theorem: symmetries lead to conserved quantities (at least in variational systems)

Table of Contents

(1) Introduction

(2) Hamiltonian Systems
(3) Lax Pairs
(4) The $K d V$ equation
(5) Discrete integrable systems

Lax Pairs

A Lax Pair consists of two matrices (or operators) L and P,

- depending on the dynamical variables,
- acting on some auxiliary space,
- such that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} L=[P, L] \quad:=P L-L P \tag{*}
\end{equation*}
$$

is equivalent to the equations of motion.

Equation $(*)$ represents the compatibility of

- the eigenvalue problem $L(t) \phi(t)=\lambda \phi(t)$,
- and the linear equation $\frac{\mathrm{d} \phi(t)}{\mathrm{d} t}=P(t) \phi(t)$.

Lax Pairs

For all $k \in \mathbb{N}$,

$$
\operatorname{tr}\left(L^{k}\right)
$$

is a conserved quantity of the system $\frac{\mathrm{d}}{\mathrm{d} t} L=[P, L]$.
proof

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{tr}\left(L^{k}\right) & =\operatorname{tr}\left(\frac{\mathrm{d}}{\mathrm{~d} t} L^{k}\right) \\
& =\operatorname{tr}\left(\frac{\mathrm{d} L}{\mathrm{~d} t} L^{k-1}+L \frac{\mathrm{~d} L}{\mathrm{~d} t} L^{k-2}+\ldots+L^{k-1} \frac{\mathrm{~d} L}{\mathrm{~d} t}\right) \\
& =\operatorname{tr}\left((P L-L P) L^{k-1}+L(P L-L P) L^{k-2}+\ldots+L^{k-1}(P L-L P)\right) \\
& =\operatorname{tr}\left(P L^{k}-L^{k} P\right)=0
\end{aligned}
$$

Compatibility of linear equations leads to conserved quantities.

Example: harmonic oscillator

$$
\begin{gathered}
L=\left(\begin{array}{cc}
p & \omega q \\
\omega q & -p
\end{array}\right), \\
P=\left(\begin{array}{cc}
0 & -\frac{1}{2} \omega \\
\frac{1}{2} \omega & 0
\end{array}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t} L=[P, L]=P L-L P \\
\Downarrow \\
\left(\begin{array}{cc}
\dot{p} & \omega \dot{q} \\
\omega \dot{q} & -\dot{p}
\end{array}\right)=\left(\begin{array}{cc}
-\omega^{2} q & \omega p \\
\omega p & \omega^{2} q
\end{array}\right) \\
\Downarrow \\
\dot{p}=-\omega^{2} q
\end{gathered} \begin{gathered}
\text { and } \quad \dot{q}=p
\end{gathered}
$$

(A)

(B)

Example: harmonic oscillator

Conserved quantities:

$$
\begin{aligned}
\operatorname{tr}(L) & =0 \\
\operatorname{tr}\left(L^{2}\right) & =2 p^{2}+2 \omega^{2} q^{2}=4 H \\
\operatorname{tr}\left(L^{3}\right) & =0 \\
\operatorname{tr}\left(L^{4}\right) & =2\left(p^{2}+\omega^{2} q^{2}\right)^{2}=8 H^{2}
\end{aligned}
$$

Boring, 1-dimensional linear system.
4 H and $8 \mathrm{H}^{2}$ are functionally dependent, but for more interesting examples we will get several independent conserved quantities.

Table of Contents

(1) Introduction

(2) Hamiltonian Systems
(3) Lax Pairs
(4) The $K d V$ equation
(5) Discrete integrable systems

Korteweg-de Vries (KdV) equation

Liouville-Arnold
n degrees of freedom \Rightarrow need n conserved quantities.

PDEs have infinite degrees of freedom.

Indeed, some PDEs, like the KdV equation

$$
v_{t}=v_{x x x}+6 v v_{x},
$$

have an infinite amount of conserved quantities.

KdV was first derived as a model for water waves in a narrow and shallow canal

www.ma.hw.ac.uk/solitons/

Water waves described by the KdV equation

https://youtu.be/hfc3IL9gAts

Soliton interaction

https://commons.wikimedia.org/wiki/Category: Solitons\#/media/File:KdV_Solitons2.gif

Asymptotic behavior: like superposition, but with phase shift.

A brief history of solitons

1834 John Scott Russell observes Wave of Translation generated by stopping boat in canal
I followed it on horseback, and overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its original figure [...] after a chase of one or two miles I lost it in the windings of the channel.

1871 - 1895 Rayleigh, Boussinesq, Korteweg and de Vries develop mathematical models for Russels observation. $\rightarrow \mathrm{KdV}$ equation.
1965 Zabusky and Kruskal numerically observe solitons and thier interaction for the KdV equation (and use it to explain the Fermi-Pasta-Ulam-Tsingou experiment).
1967 Gardner, Greene, Kruskal and Miura derive analytic solutions to KdV using the inverse scattering transform (IST). Key idea: scattering data evolve linearly.
1968 Peter Lax understands the IST using pairs of operators.

Lax pairs for the KdV hierarchy

$-\frac{\mathrm{d}}{\mathrm{d} t_{k}} L=\left[P_{k}, L\right]$ with $L=\partial^{2}+v$.

- Only makes sense if $\left[P_{k}, L\right]$ is a function instead of a differential operator.
- This is the case for

$$
\begin{aligned}
& P_{3}=\partial^{3}+\frac{3}{2} v \partial+\frac{3}{4} v_{x}, \\
& P_{5}=\partial^{5}+\frac{5}{2} v \partial^{3}+\frac{15}{4} v_{x} \partial^{2}+\left(\frac{25}{8} v_{x x}+\frac{15}{8} v^{2}\right) \partial+\left(\frac{15}{16} v_{x x x}+\frac{15}{8} v v_{x}\right)
\end{aligned}
$$

Equations: $v_{t_{3}}=v_{x x x}+6 v v_{x}$

$$
v_{t_{5}}=v_{x x x x x}+20 v_{x} v_{x x}+10 v v_{x x x}+30 v^{2} v_{x}
$$

Korteweg-de Vries (KdV) hierarchy

One of many integrable hierarchies:

- Nonlinear-Schrödinger
- modified KdV, schwarzian KdV
- Gel'fand Dikii (GD) hierarchies
- Kadomtsev-Petviashvili (KP) hierarchy

Physical perspective
One physical equation with infinitely many symmetries and hence infinitely many conservation laws.

Mathematical perspective
A hierarchy of equations that are symmetries of each other.

Korteweg-de Vries (KdV) hierarchy

One of many integrable hierarchies:

- Nonlinear-Schrödinger
- modified KdV, schwarzian KdV
- Gel'fand Dikii (GD) hierarchies
- Kadomtsev-Petviashvili (KP) hierarchy

Physical perspective
One physical equation with infinitely many symmetries and hence infinitely many conservation laws.

Mathematical perspective
A hierarchy of equations that are symmetries of each other.

Recall heuristic III

A system is integrable if it is part of a sufficiently large family of compatible equations.

Hamiltonian structure of the KdV hierarchy

$$
v_{t}=v_{t_{3}}=v_{x x x}+6 v v_{x} \quad \Leftrightarrow \quad v_{t}=\frac{\mathrm{d}}{\mathrm{~d} x} \frac{\delta H}{\delta v}
$$

where $H=-\frac{1}{2} v_{x}^{2}+v^{3}$ and

$$
\frac{\delta H}{\delta v}=\frac{\partial H}{\partial v}-\frac{\mathrm{d}}{\mathrm{~d} x} \frac{\partial H}{\partial v_{x}}+\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} \frac{\partial H}{\partial v_{x x}}+\ldots
$$

is the variational derivative.

Hamiltonian structure of the KdV hierarchy

$$
v_{t}=v_{t_{3}}=v_{x x x}+6 v v_{x} \quad \Leftrightarrow \quad v_{t}=\frac{\mathrm{d}}{\mathrm{~d} x} \frac{\delta H}{\delta v}
$$

where $H=-\frac{1}{2} v_{x}^{2}+v^{3}$ and

$$
\frac{\delta H}{\delta v}=\frac{\partial H}{\partial v}-\frac{\mathrm{d}}{\mathrm{dx}} \frac{\partial H}{\partial v_{x}}+\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} \frac{\partial H}{\partial v_{x x}}+\ldots
$$

is the variational derivative.
Actually, we are dealing with integrals:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int f\left(x, v, v_{x}, \ldots\right) \mathrm{d} x=\int \frac{\delta f}{\delta v} \frac{\mathrm{~d}}{\mathrm{~d} x} \frac{\delta H}{\delta v} \mathrm{~d} x
$$

The corresponding Poisson bracket is

$$
\left\{\int f \mathrm{~d} x, \int g \mathrm{~d} x\right\}=\int \frac{\delta f}{\delta v} \frac{\mathrm{~d}}{\mathrm{~d} x} \frac{\delta g}{\delta v} \mathrm{~d} x
$$

(Skew symmetric due to integration by parts.)

Bi-Hamiltonian structure of the KdV hierarchy

We found one Poisson bracket:

$$
\left\{\int f \mathrm{~d} x, \int g \mathrm{~d} x\right\}_{1}=\int \frac{\delta f}{\delta v} \frac{\mathrm{~d}}{\mathrm{~d} x} \frac{\delta g}{\delta v} \mathrm{~d} x
$$

There is also a second Poisson structure $\left\{\int f \mathrm{~d} x, \int g \mathrm{~d} x\right\}_{2}$, and Hamilton functions $H_{1}, H_{3}, H_{5}, \ldots$, such that

$$
\begin{aligned}
& \int v_{t_{3}} \mathrm{~d} x=\left\{\int v \mathrm{~d} x, \int H_{3} \mathrm{~d} x\right\}_{1}=\left\{\int v \mathrm{~d} x, \int H_{1} \mathrm{~d} x\right\}_{2} \\
& \int v_{t_{5}} \mathrm{~d} x=\left\{\int v \mathrm{~d} x, \int H_{5} \mathrm{~d} x\right\}_{1}=\left\{\int v \mathrm{~d} x, \int H_{3} \mathrm{~d} x\right\}_{2} \\
& \int v_{t_{7}} \mathrm{~d} x=\left\{\int v \mathrm{~d} x, \int H_{7} \mathrm{~d} x\right\}_{1}=\left\{\int v \mathrm{~d} x, \int H_{5} \mathrm{~d} x\right\}_{2}
\end{aligned}
$$

This gives us another way to (recursively) construct the KdV hierarchy.

Table of Contents

(1) Introduction

(2) Hamiltonian Systems
(3) Lax Pairs

4 4 The $K d V$ equation
(5) Discrete integrable systems

The problem of integrable discretization

- Many notions of integrability have a discrete counterpart \rightarrow Integrable difference equations.
- Numerical discretizations almost always destroy integrability.
- What is the link between the continuous and discrete worlds?

Quad equations

$$
Q\left(V, V_{1}, V_{2}, V_{12}, \alpha_{1}, \alpha_{2}\right)=0 \quad \text { on } \mathbb{Z}^{2}
$$

Subscripts of V denote lattice shifts, α_{1}, α_{2} are parameters.

Invariant under symmetries of the square.
Affine in each of V, V_{1}, V_{2}, V_{12}.

Quad equations

$$
Q\left(V, V_{1}, V_{2}, V_{12}, \alpha_{1}, \alpha_{2}\right)=0 \quad \text { on } \mathbb{Z}^{2}
$$

Subscripts of V denote lattice shifts, α_{1}, α_{2} are parameters.
Invariant under symmetries of the square.
Affine in each of V, V_{1}, V_{2}, V_{12}.
Integrability for systems quad equations: multi-dimensional consistency of

$$
Q\left(V, V_{i}, V_{j}, V_{i j}, \alpha_{i}, \alpha_{j}\right)=0
$$

i.e. given V, V_{1}, V_{2} and V_{3}, the three ways of calculating V_{123} give the same result.

Example: discrete KdV equation

$$
\left(V-V_{12}\right)\left(V_{1}-V_{2}\right)-\alpha_{1}+\alpha_{2}=0
$$

Quad equations

$$
Q\left(V, V_{1}, V_{2}, V_{12}, \alpha_{1}, \alpha_{2}\right)=0 \text { on } \mathbb{Z}^{2}
$$

Subscripts of V denote lattice shifts, α_{1}, α_{2} are parameters.
Invariant under symmetries of the square.
Affine in each of V, V_{1}, V_{2}, V_{12}.
Integrability for systems quad equations: multi-dimensional consistency of

$$
Q\left(V, V_{i}, V_{j}, V_{i j}, \alpha_{i}, \alpha_{j}\right)=0
$$

i.e. given V, V_{1}, V_{2} and V_{3}, the three ways of calculating V_{123} give the same result.

Example: discrete KdV equation

$$
\left(V-V_{12}\right)\left(V_{1}-V_{2}\right)-\alpha_{1}+\alpha_{2}=0
$$

Integrable continuum limits

Consider a continuous field $v: \mathbb{R}^{n} \rightarrow \mathbb{R}$, depending on time variables $\left(x=t_{1}, t_{2}, \ldots, t_{n}\right)$

Identify each lattice shift with some shift in \mathbb{R}^{n}, depending on α_{1}, α_{2} :

$$
\begin{array}{rlrl}
V & =v(x, & t_{2}, & \left.\ldots, t_{n}\right) \\
V_{1} & =v\left(x+\alpha_{1},\right. & t_{2}+\alpha_{1}^{2}, & \left.\ldots, t_{n}+\alpha_{1}^{n}\right) \\
V_{2} & =v\left(x+\alpha_{2},\right. & t_{2}+\alpha_{2}^{2}, & \\
V_{12} & =v\left(x+\alpha_{1}+\alpha_{2}, t_{2}+\alpha_{1}^{2}+\alpha_{2}^{2}, \ldots, t_{n}+\alpha_{1}^{n}+\alpha_{2}^{n}\right)
\end{array}
$$

Integrable continuum limits

Consider a continuous field $v: \mathbb{R}^{n} \rightarrow \mathbb{R}$, depending on time variables $\left(x=t_{1}, t_{2}, \ldots, t_{n}\right)$

Identify each lattice shift with some shift in \mathbb{R}^{n}, depending on α_{1}, α_{2} :

$$
\begin{array}{rlrl}
V & =v(x, & t_{2}, & \left.\ldots, t_{n}\right) \\
V_{1} & =v\left(x+\alpha_{1},\right. & t_{2}+\alpha_{1}^{2}, & \left.\ldots, t_{n}+\alpha_{1}^{n}\right) \\
V_{2} & =v\left(x+\alpha_{2},\right. & t_{2}+\alpha_{2}^{2}, & \\
V_{12} & =v\left(x+t_{1}+\alpha_{2}, t_{2}+\alpha_{1}^{n}\right) \\
\left.V_{1}^{n}+\alpha_{2}^{2}, \ldots, t_{n}+\alpha_{1}^{n}+\alpha_{2}^{n}\right)
\end{array}
$$

Then we can write $Q\left(V, V_{1}, V_{2}, V_{12}, \alpha_{1}, \alpha_{2}\right)=0$ as a power series:

$$
\sum_{i, j \in \mathbb{N}} F_{i, j}[v] \alpha_{1}^{i} \alpha_{2}^{j}=0
$$

Example: for the discrete KdV equation, we find that $F_{0, j}=0(j=3,5, \ldots)$ is the KdV hierarchy.

Summary

Integrable systems pretend to be linear.

Summary

Integrable systems pretend to be linear.

They can do so because they are part of a hierarchy of compatible equations \Rightarrow many conserved quantities.

Tools to describe such hierarchies: Hamiltonian structures, Lax pairs, ...

Summary

Integrable systems pretend to be linear.

They can do so because they are part of a hierarchy of compatible equations \Rightarrow many conserved quantities. Tools to describe such hierarchies: Hamiltonian structures, Lax pairs, ...

A single integrable difference equation can generate a full family of integrable differential equations.

Suggested reading

O. Babelon, D. Bernard, M. Talon. Introduction to classical integrable systems. Cambridge University Press, 2003.
A. Kasman. Glimpses of Soliton Theory: The Algebra and Geometry of Nonlinear PDEs. AMS, 2010.

Yu. Suris. The problem of integrable discretization: Hamiltonian approach. Birkhäuser, 2012.
J. Hietarinta, N. Joshi, F. Nijhoff. Discrete Systems and Integrability. Cambridge University Press, 2016.

Thank you for your attention!

