A variational structure for integrable hierarchies

Mats Vermeeren

(Joint work with Yuri B. Suris)

Technische Universität Berlin

October 6, 2016 Classical Analysis Seminar, KU Leuven

- Background
 - Integrable systems
 - Hamiltonian systems
 - Variational systems
- 2 Discrete pluri-Lagrangian systems
- Continuous pluri-Lagrangian systems
 - Definition and characterization
 - Examples: Toda and KdV
 - Relation to other notions

- Background
 - Integrable systems
 - Hamiltonian systems
 - Variational systems
- 2 Discrete pluri-Lagrangian systems
- Continuous pluri-Lagrangian systems
 - Definition and characterization
 - Examples: Toda and KdV
 - Relation to other notions

Integrable systems

Many different contexts, many different definitions.

Intuitive meaning

An integrable system is (a system of) nonlinear differential or difference equation(s), that behaves as if it were linear:

- Solvability (in some sense)
- Superposition principle (for special solutions)
- Rich hidden structure explaining nice behavior

That structure can take many shapes. For us, it will always be a variation the following idea:

Vague definition

An equation is integrable if it is part of a "sufficiently large" system of "compatible" equations.

Hamiltonian Systems

Hamilton function

$$H: \mathbb{R}^{2N} \cong T^*Q \to \mathbb{R}: (q,p) \mapsto H(q,p)$$

determines dynamics:

$$\dot{q}_{i} = \frac{\partial H}{\partial p_{i}}$$

$$\dot{p}_{i} = -\frac{\partial H}{\partial q_{i}}$$

Geometric interpretation:

- ▶ Phase space T^*Q with canonical symplectic 2-form ω
- flow along vector field X_H determined by $\iota_{X_H}\omega=\mathrm{d} H$
- ▶ the flows consists of symplectic maps and preserves *H*.

Poisson Brackets

Poisson bracket of two functionals on T^*Q :

$$\{f,g\} = \sum_{i=1}^{N} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} \right) = \omega(\nabla f, \nabla g)$$

Dynamics of a Hamiltonian system:

$$\dot{q}_i = \{q_i, H\}, \qquad \dot{p}_i = \{p_i, H\}, \qquad \frac{\mathrm{d}}{\mathrm{d}t} f(q, p) = \{f(q, p), H\}$$

Properties:

anti-symmetry:
$$\{f,g\}=-\{g,f\}$$

bilinearity: $\{f,g+\lambda h\}=\{f,g\}+\lambda\{f,h\}$
Leibniz property: $\{f,gh\}=\{f,g\}h+g\{f,h\}$
Jacobi identity: $\{f,\{g,h\}\}+\{g,\{h,f\}\}+\{h,\{f,g\}\}=0$

Any bracket with these properties supports Hamiltonian systems.

Liouville-Arnold integrability

A Hamiltonian system with Hamilton function $H: \mathbb{R}^{2N} \to \mathbb{R}$ is Liouville-Arnold integrable if there exist N functionally independent Hamilton functions $H=H_1,H_2,\ldots H_N$ such that

$$\{H_i,H_j\}=0.$$

In particular, this implies that the flows commute. (In fact $\{H_i, H_i\} = const$ would be sufficient.)

The evolution of a Liouville-Arnold integrable system is linear on a topological N-torus.

Lagrangian Mechanics

Lagrange function

$$L: \mathbb{R}^{2N} \cong TQ \to \mathbb{R}: (q, \dot{q}) \mapsto L(q, \dot{q})$$

determines dynamics:

Flow along curves q(t) that minimize (or are critical points of) the action

$$\int_{t_0}^{t_1} L(q(t), \dot{q}(t)) dt$$

where the integration interval $[t_0, t_1]$ and the boundary values $q(t_0)$ and $q(t_1)$ are fixed.

Lagrangian Mechanics

This is called a variational principle, because the equations of motion can be derived formally using infinitesimal variations δq of the curve q. The curve is a critical points if

$$0 = \delta \int_{t_0}^{t_1} L(q(t), \dot{q}(t)) dt$$

$$= \int_{t_0}^{t_1} \frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q} dt$$

$$= \int_{t_0}^{t_1} \left(\frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} \right) \delta q dt + \left(\frac{\partial L}{\partial \dot{q}} \delta q \right) \Big|_{t_0}^{t_1}$$

Euler-Lagrange Equation(s):

$$\begin{split} \frac{\partial L}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}} &= 0 & \text{for scalar } q \\ \frac{\partial L}{\partial q_i} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_i} &= 0 & \text{for } i = 1, \dots, N \end{split} \qquad \text{if } q \in \mathbb{R}^N \end{split}$$

Lagrangian Mechanics

This is called a variational principle, because the equations of motion can be derived formally using infinitesimal variations δq of the curve q. The curve is a critical points if

$$0 = \delta \int_{t_0}^{t_1} L(q(t), \dot{q}(t)) dt$$

$$= \int_{t_0}^{t_1} \frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q} dt$$

$$= \int_{t_0}^{t_1} \left(\frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} \right) \delta q dt + \left(\frac{\partial L}{\partial \dot{q}} \delta q \right) \Big|_{t_0}^{t_1}$$

Euler-Lagrange Equation(s):

$$\begin{split} \frac{\partial L}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}} &= 0 & \text{for scalar } q \\ \frac{\partial L}{\partial q_i} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_i} &= 0 & \text{for } i = 1, \dots, N \end{split} \qquad \text{if } q \in \mathbb{R}^N \end{split}$$

Legendre transformation

Relates Hamiltonian and Lagrangian formalism:

$$p\dot{q} = H(q,p) + L(q,\dot{q}).$$

Differentiating w.r.t. \dot{q} , p and q,

$$\begin{split} p &= \frac{\partial L}{\partial \dot{q}} \\ \dot{q} &= \frac{\partial H}{\partial p} \\ 0 &= \frac{\partial H}{\partial q} + \frac{\partial L}{\partial q} = \left(\frac{\partial H}{\partial q} + \dot{p}\right) + \left(\frac{\partial L}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}}\right), \end{split}$$

establishes equivalence between Hamiltonian and Lagrangian equations of motion.

For Hamiltonian systems "built on" different Poisson brackets the relation is not so obvious.

Example: Toda Lattice

Configuration variable $q \in \mathbb{R}^N$, positions of N particles on a line.

Lagrangian:

$$L(q, \dot{q}) = \sum_{i=1}^{N} \left(\frac{1}{2} \dot{q}_i^2 - e^{q_{i+1} - q_i} \right),$$

The Euler-Lagrange equations are

$$0 = \frac{\partial L}{\partial q_i} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_i} = e^{q_i - q_{i-1}} - e^{q_{i+1} - q_i} - \ddot{q}_i,$$

so the dynamics are determined by

$$\ddot{q}_i = e^{q_i - q_{i-1}} - e^{q_{i+1} - q_i}$$

This is the first of an infinite hierarchy of compatible ODEs.

Lagrangian PDEs

Lagrangian density $L(v, v_t, v_x, v_{tt}, v_{xt}, v_{xx}, ...)$

Action
$$S = \int L \, \mathrm{d}x \, \mathrm{d}t$$

Look for a function v that is a critical point of the action, i.e. for arbitrary infinitesimal variations δv :

$$0 = \delta S = \int \delta L \, dx \, dt = \int \sum_{I} \frac{\partial L}{\partial v_{I}} \delta v_{I} \, dx \, dt$$
$$= \int \sum_{I} (-1)^{|I|} \left(D_{I} \frac{\partial L}{\partial v_{I}} \right) \delta v \, dx \, dt$$

Euler-Lagrange equation:

$$\frac{\delta L}{\delta v} := \sum_I (-1)^{|I|} \mathrm{D}_I \frac{\partial L}{\partial v_I} = 0$$

If
$$I=(i_1,\ldots,i_k)$$
 then $D_I=\frac{\mathrm{d}^{i_1}}{\mathrm{d}^{i_1}t_1}\cdots\frac{\mathrm{d}^{i_k}}{\mathrm{d}^{i_k}t_k}$ and $v_I=D_Iv$.

Example: KdV equation

Lagrangian density $L = \frac{1}{2}v_xv_t - v_x^3 - \frac{1}{2}v_xv_{xxx}$

Euler-Lagrange Equation:

$$0 = \frac{\delta L}{\delta v} = \sum_{I} (-1)^{|I|} D_{I} \frac{\partial L}{\partial v_{I}}$$

$$= \frac{\partial L}{\partial v} - D_{t} \frac{\partial L}{\partial v_{t}} - D_{x} \frac{\partial L}{\partial v_{x}} + D_{xx} \frac{\partial L}{\partial v_{xx}} - D_{xxx} \frac{\partial L}{\partial v_{xxx}} + \dots$$

$$= -\frac{1}{2} D_{t}(v_{x}) - \frac{1}{2} D_{x}(v_{t}) + 3D_{x}(v_{x}^{2}) + \frac{1}{2} D_{x}(v_{xxx}) + \frac{1}{2} D_{xxx}(v_{x})$$

$$= -v_{xt} + 6v_{x}v_{xx} + v_{xxxx}$$

$$\Rightarrow v_{yt} = 6v_{x}v_{yx} + v_{xxxx}$$

Substitute $u = v_x$ to find the Korteweg-de Vries equation

$$u_t = 6uu_x + u_{xxx}$$
.

Or integrate to find the Potential Korteweg-de Vries equation

$$v_t = 3v_x^2 + v_{xxx}.$$

Main question

Integrable systems like the Toda lattice and the KdV equation come with infinite hierarchies. Each individual equation is Lagrangian/Hamiltonian.

On the Hamiltonian side it is clear when the equations of a hierarchy fit together: $\{H_i, H_j\} = 0$.

What about the Lagrangian side?

Is there a variational description of an integrable hierarchy?

- Background
 - Integrable systems
 - Hamiltonian systems
 - Variational systems
- ② Discrete pluri-Lagrangian systems
- Continuous pluri-Lagrangian systems
 - Definition and characterization
 - Examples: Toda and KdV
 - Relation to other notions

Inspiration: lattice equations

Quad equation:

$$Q(x, x_1, x_2, x_{12}, \alpha_1, \alpha_2) = 0$$

Subscripts of x denote lattice shifts, α_1,α_2 are parameters.

Invariant under symmetries of the square, affine in each of x, x_1 , x_2 , x_{12} .

Integrability for systems quad equations: Multi-dimensional consistency of

$$Q(x, x_i, x_j, x_{ij}, \alpha_i, \alpha_j) = 0,$$

i.e. the three ways of calculating x_{123} give the same result.

Inspiration: lattice equations

- ► Classification integrable quad equations: [Adler, Bobenko, Suris. Classification of integrable equations on quad-graphs. The consistency approach. Commun. Math. Phys. 2003.]
- Variational formulation for all of them:
 [Lobb, Nijhoff. Lagrangian multiforms and multidimensional consistency. J. Phys. A. 2009.]

Pluri-Lagrangian structure for quad equations

For some discrete 2-form $\mathcal{L}(\sigma_{ij}) = \mathcal{L}(x, x_i, x_j, x_{ij}, \alpha_i, \alpha_j)$, the action $\sum_{\sigma_{ij} \in S} \mathcal{L}(\sigma_{ij})$ is critical on all 2-surfaces S in \mathbb{N}^N simultaneously.

Furthermore, the value of the action does not depend on the surface, i.e. the discrete 2-form \mathcal{L} is closed.

Example

For the discrete KdV equation $(x - x_{ij})(x_i - x_j) - \alpha_i + \alpha_j = 0$ we have the Lagrangian

$$\mathcal{L}(x, x_i, x_j, x_{ij}, \alpha_i, \alpha_j) = (x_i - x_j)x - (\alpha_i - \alpha_i)\log(x_i - x_j)$$

We look at elementary corners of an arbitrary surface:

Depending on the orientation, we get the criticality conditions

(a)
$$x_{ij} - x_{ik} - \frac{\alpha_i - \alpha_k}{x_i - x_k} + \frac{\alpha_i - \alpha_j}{x_i - x_j} = 0$$
,

(b)
$$x_i - x_j - \frac{\alpha_j - \alpha_k}{x_{ij} - x_{ik}} + \frac{\alpha_i - \alpha_k}{x_{ij} - x_{jk}} = 0$$

Example

(a)
$$x_{ij}-x_{ik}-\frac{\alpha_i-\alpha_k}{x_i-x_k}+\frac{\alpha_i-\alpha_j}{x_i-x_j}=0,$$

(b)
$$x_i - x_j - \frac{\alpha_j - \alpha_k}{x_{ij} - x_{ik}} + \frac{\alpha_i - \alpha_k}{x_{ij} - x_{jk}} = 0$$

The conditions for other elementary shapes (flat or edge), follow from these.

They are consequences of, but not equivalent to, the discrete KdV equation

$$(x-x_{ij})(x_i-x_j)-\alpha_i+\alpha_j=0.$$

Recall KdV: The Euler-Lagrange equation was a consequence of, but not equivalent to, the potential KdV equation.

Details e.g. in [Boll, Petrera, Suris. What is integrability of discrete variational systems? Proc. R. Soc. A. 2014.]

- Background
 - Integrable systems
 - Hamiltonian systems
 - Variational systems
- 2 Discrete pluri-Lagrangian systems
- Continuous pluri-Lagrangian systems
 - Definition and characterization
 - Examples: Toda and KdV
 - Relation to other notions

Continuous analogue

2D Pluri-Lagrangian structure

Field u on multi-time \mathbb{R}^N ,

$$\mathcal{L} = \sum_{i,j} L_{ij}[u] \, \mathrm{d} t_i \wedge \mathrm{d} t_j.$$

Action $\int_{S} \mathcal{L}$ is critical on all smooth 2-surfaces S in \mathbb{R}^{N} .

Possible for any dimension: field u on multi-time \mathbb{R}^N ,

$$\mathcal{L} = \sum_{i_1, \dots, i_d} L_{i_1 \dots i_d}[u] \, \mathrm{d} t_{i_1} \wedge \dots \wedge \mathrm{d} t_{i_d}.$$

Action $\int_{S} \mathcal{L}$ is critical on all smooth d-surfaces S in \mathbb{R}^{N} .

The 1D case

Consider a Lagrangian one-form $\mathcal{L} = \sum_i L_i[u] \, \mathrm{d}t_i$

Lemma

If the action $\int_{S} \mathcal{L}$ is critical on all stepped curves S in \mathbb{R}^{N} , then it is critical on all smooth curves.

Indeed, $\int_{S_1} \mathcal{L} - \int_{S_2} \mathcal{L} = \int_M \mathrm{d}\mathcal{L}$, where $\partial M = S_1 \cup S_2$. By choosing a fine approximation, M can be made arbitrarily small.

Variations are local, so it is sufficient to look at a general L-shaped curve $S = S_i \cup S_j$.

Multi-time Euler-Lagrange equations for the 1D case

The variation of the action on S_i is

$$\begin{split} \delta \int_{S_i} L_i \, \mathrm{d}t_i &= \int_{S_i} \sum_I \frac{\partial L_i}{\partial u_I} \delta u_I \, \mathrm{d}t_i \\ &= \int_{S_i} \sum_{I \not\ni t_i} \frac{\delta_i L_i}{\delta u_I} \delta u_I \, \mathrm{d}t_i + \sum_I \frac{\delta_i L_i}{\delta u_{It_i}} \delta u_I \bigg|_p, \end{split}$$

where I denotes a multi-index, and

$$\frac{\delta_{i}L_{i}}{\delta u_{I}} = \sum_{\alpha=0}^{\infty} (-1)^{\alpha} \frac{\mathrm{d}^{\alpha}}{\mathrm{d}t_{i}^{\alpha}} \frac{\partial L_{i}}{\partial u_{It_{i}^{\alpha}}} = \frac{\partial L_{i}}{\partial u_{I}} - \frac{\mathrm{d}}{\mathrm{d}t_{i}} \frac{\partial L_{i}}{\partial u_{It_{i}}} + \frac{\mathrm{d}^{2}}{\mathrm{d}t_{i}^{2}} \frac{\partial L_{i}}{\partial u_{It_{i}^{2}}} - \dots$$

Multi-time Euler-Lagrange equations for curves, $\mathcal{L} = \sum_i L_i[u] \, \mathrm{d}t_i$

$$\frac{\delta_i L_i}{\delta u_I} = 0 \qquad \forall I \not\ni t_i \qquad \text{and} \qquad \frac{\delta_i L_i}{\delta u_{It_i}} = \frac{\delta_j L_j}{\delta u_{It_i}} \qquad \forall I$$

The 2D case

Consider a Lagrangian two-form

$$\mathcal{L} = \sum_{i,j} L_{ij}[u] dt_i \wedge dt_j.$$

It is sufficient to look at stepped surfaces and their elementary corners.

A k-flower can be decomposed into 3-flowers.

The 2D case

Multi-time EL equations for 2D surfaces, $\mathcal{L} = \sum_{i,j} L_{ij}[u] \, \mathrm{d}t_i \wedge \mathrm{d}t_j$

$$\frac{\delta_{ij}L_{ij}}{\delta u_{I}} = 0 \qquad \forall I \not\ni t_{i}, t_{j},
\frac{\delta_{ij}L_{ij}}{\delta u_{It_{j}}} = \frac{\delta_{ik}L_{ik}}{\delta u_{It_{k}}} \qquad \forall I \not\ni t_{i},
\frac{\delta_{ij}L_{ij}}{\delta u_{It_{i}t_{j}}} + \frac{\delta_{jk}L_{jk}}{\delta u_{It_{j}t_{k}}} + \frac{\delta_{ki}L_{ki}}{\delta u_{It_{k}t_{i}}} = 0 \qquad \forall I.$$

Where

$$\frac{\delta_{ij}L_{ij}}{\delta u_{l}} = \sum_{\alpha=0}^{\infty} \sum_{\beta=0}^{\infty} (-1)^{\alpha+\beta} \frac{\mathrm{d}^{\alpha}}{\mathrm{d}t_{i}^{\alpha}} \frac{\mathrm{d}^{\beta}}{\mathrm{d}t_{j}^{\beta}} \frac{\partial L_{ij}}{\partial u_{lt_{i}^{\alpha}}t_{j}^{\beta}}
= \frac{\partial L_{ij}}{\partial u_{l}} - \frac{\mathrm{d}}{\mathrm{d}t_{i}} \frac{\partial L_{ij}}{\partial u_{lt_{i}}} - \frac{\mathrm{d}}{\mathrm{d}t_{j}} \frac{\partial L_{ij}}{\partial u_{lt_{j}}} + \frac{\mathrm{d}^{2}}{\mathrm{d}t_{i}^{2}} \frac{\partial L_{ij}}{\partial u_{lt_{i}t_{i}}} + \frac{\mathrm{d}}{\mathrm{d}t_{i}} \frac{\mathrm{d}}{\mathrm{d}t_{j}} \frac{\partial L_{ij}}{\partial u_{lt_{i}t_{j}}} + \frac{\mathrm{d}^{2}}{\mathrm{d}t_{j}^{2}} \frac{\partial L_{ij}}{\partial u_{lt_{i}t_{j}}} + \frac{\mathrm{d}^{2}}{\mathrm{d}t_{i}^{2}} \frac{\partial L_{ij}}{\partial u_{lt_{i}}} + \frac{\mathrm{d}^{2}}{\mathrm{d}t_{i}^{2}} \frac{\partial L_{ij}}{\partial u_{lt_{i}}} + \frac{\mathrm{d}^{2}}{\mathrm{d}t_{i}^{2}} \frac{\partial L_{ij}}{\partial u_{lt_{i}}} + \frac{\mathrm{d}^{2}}{\mathrm{d}t_{i}^{2}} \frac{\partial$$

$$\mathcal{L} = L_1[q]\mathrm{d}t_1 + L_2[q]\mathrm{d}t_2$$

$$\dots$$
 q_{k+1} q_k q_{k-1} \dots

$$L_1[q] = \sum_k \frac{1}{2} (q_k)_{t_1}^2 - e^{q_k - q_{k-1}}$$

$$L_2[q] = \sum_k (q_k)_{t_1} (q_k)_{t_2} + \frac{1}{3} (q_k)_{t_1}^3 + ((q_{k-1})_{t_1} + (q_k)_{t_1}) e^{q_k - q_{k-1}}$$

$$\begin{split} \frac{\delta_1 L_1}{\delta q_k} &= 0 \quad \Rightarrow \quad (q_k)_{t_1 t_1} = \mathrm{e}^{q_{k+1} - q_k} - \mathrm{e}^{q_k - q_{k-1}} \\ \frac{\delta_2 L_2}{\delta q_k} &= 0 \quad \Rightarrow \quad (q_k)_{t_1 t_2} = ((q_k)_{t_1} + (q_{k+1})_{t_1}) \mathrm{e}^{q_{k+1} - q_k} \\ &\qquad \qquad - ((q_{k-1})_{t_1} + (q_k)_{t_1}) \mathrm{e}^{q_k - q_{k-1}} \end{split}$$

$$\mathcal{L} = L_1[q] \mathrm{d}t_1 + L_2[q] \mathrm{d}t_2$$

$$\dots$$
 q_{k+1} q_k q_{k-1} \dots

$$L_1[q] = \sum_k \frac{1}{2} (q_k)_{t_1}^2 - e^{q_k - q_{k-1}}$$

$$L_2[q] = \sum_{k} (q_k)_{t_1} (q_k)_{t_2} + \frac{1}{3} (q_k)_{t_1}^3 + ((q_{k-1})_{t_1} + (q_k)_{t_1}) e^{q_k - q_{k-1}}$$

$$egin{aligned} rac{\delta_1 L_1}{\delta q_k} &= 0 \quad \Rightarrow \quad (q_k)_{t_1 t_1} = \mathrm{e}^{q_{k+1} - q_k} - \mathrm{e}^{q_k - q_{k-1}} \ rac{\delta_2 L_2}{\delta q_k} &= 0 \quad \Rightarrow \quad (q_k)_{t_1 t_2} = ((q_k)_{t_1} + (q_{k+1})_{t_1}) \mathrm{e}^{q_{k+1} - q_k} \ &- ((q_{k-1})_{t_1} + (q_k)_{t_1}) \mathrm{e}^{q_k - q_{k-1}} \end{aligned}$$

$$\frac{\delta_2 L_2}{\delta(q_k)_{t_1}} = 0 \quad \Rightarrow \quad (q_k)_{t_2} = -(q_k)_{t_1}^2 + e^{q_{k+1} - q_k} - e^{q_k - q_{k-1}}$$

$$\frac{\delta_1 L_1}{\delta(q_k)_{t_1}} = \frac{\delta_2 L_2}{\delta(q_k)_{t_2}} \quad \Rightarrow \quad (q_k)_{t_1} = (q_k)_{t_1}$$

$$\mathcal{L} = L_1[q]\mathrm{d}t_1 + L_2[q]\mathrm{d}t_2$$

$$\ldots$$
 q_{k+1} q_k q_{k-1} \ldots

$$L_1[q] = \sum_k \frac{1}{2} (q_k)_{t_1}^2 - e^{q_k - q_{k-1}}$$

$$L_2[q] = \sum_{k} (q_k)_{t_1} (q_k)_{t_2} + \frac{1}{3} (q_k)_{t_1}^3 + ((q_{k-1})_{t_1} + (q_k)_{t_1}) e^{q_k - q_{k-1}}$$

$$\frac{\delta_1 L_1}{\delta q_k} = 0 \quad \Rightarrow \quad (q_k)_{t_1 t_1} = e^{q_{k+1} - q_k} - e^{q_k - q_{k-1}} \tag{1}$$

$$\frac{\delta_2 L_2}{\delta q_k} = 0 \quad \Rightarrow \quad (q_k)_{t_1 t_2} = ((q_k)_{t_1} + (q_{k+1})_{t_1}) e^{q_{k+1} - q_k}$$

$$-((q_{k-1})_{t_1}+(q_k)_{t_1})e^{q_k-q_{k-1}}$$
(follows from (1) and (2))

$$\frac{\delta_2 L_2}{\delta(q_k)_{t_1}} = 0 \quad \Rightarrow \quad (q_k)_{t_2} = -(q_k)_{t_1}^2 + e^{q_{k+1} - q_k} - e^{q_k - q_{k-1}}$$
 (2)

$$\delta_1 L_1 - \delta_2 L_2 \rightarrow (a_1) -$$

- The pluri-Lagrangian formalism produces the 2nd flow in its evolutionary form: $(q_k)_{t_2} = \dots$ (Same for higher flows.)

 The classical Lagrangian formalism only gives the differentiated flow
 - The classical Lagrangian formalism only gives the differentiated flow: $(q_k)_{t_1t_2} = \dots$
- ▶ L_2 and the higher Lagrangians are closely related to the variational symmetries of L_1 .

[Petrera, Suris. Variational symmetries and pluri-Lagrangian systems in classical mechanics. In preparation.]

Example: Potential KdV hierarchy

$$v_{t_2} = g_2[v] = v_{xxx} + 3v_x^2,$$

 $v_{t_3} = g_3[v] = v_{xxxx} + 10v_x v_{xxx} + 5v_{xx}^2 + 10v_x^3,$

where we identify $t_1 = x$.

The differentiated equations $v_{xt_i} = \frac{\mathrm{d}}{\mathrm{d}x} g_i[v]$ are Lagrangian with

$$L_{12} = \frac{1}{2}v_{x}v_{t_{2}} - \frac{1}{2}v_{x}v_{xxx} - v_{x}^{3},$$

$$L_{13} = \frac{1}{2}v_{x}v_{t_{3}} - v_{x}v_{xxxx} - 2v_{xx}v_{xxxx} - \frac{3}{2}v_{xxx}^{2} + 5v_{x}^{2}v_{xxx} + 5v_{x}v_{xx}^{2} + \frac{5}{2}v_{x}^{4}.$$

We choose the coefficient L_{23} of

$$\mathcal{L} = L_{12}[u] dt_1 \wedge dt_2 + L_{13}[u] dt_1 \wedge dt_3 + L_{23}[u] dt_2 \wedge dt_3$$

such that the pluri-Lagrangian 2-form is closed on solutions. It is of the form

$$L_{23} = \frac{1}{2}(v_{t_2}g_3[v] - v_{t_3}g_2[v]) + p_{23}[v].$$

Example: Potential KdV hierarchy

▶ The equations

$$\frac{\delta_{12}L_{12}}{\delta \nu}=0 \qquad \text{and} \qquad \frac{\delta_{13}L_{13}}{\delta \nu}=0$$

are

$$v_{\mathsf{x} t_2} = rac{\mathrm{d}}{\mathrm{d} x} g_2[v] \qquad ext{and} \qquad v_{\mathsf{x} t_3} = rac{\mathrm{d}}{\mathrm{d} x} g_3[v].$$

▶ The equations

$$\frac{\delta_{12}L_{12}}{\delta v_x} = \frac{\delta_{32}L_{32}}{\delta v_{t_3}} \qquad \text{and} \qquad \frac{\delta_{13}L_{13}}{\delta v_x} = \frac{\delta_{23}L_{23}}{\delta v_{t_2}}$$

yield

$$v_{t_2} = g_2$$
 and $v_{t_3} = g_3$,

the evolutionary equations!

▶ All other multi-time EL equations are corollaries of these.

Relation to Hamiltonian formalism

Consider a pluri-Lagrangian two form $\sum_{i,j} L_{ij} \mathrm{d}t_i \wedge \mathrm{d}t_j$ with

$$L_{1j} = \frac{1}{2}v_{x}v_{t_{j}} - h_{j}(v_{x}, v_{xx}, \ldots)$$

and L_{ii} such that the multi-time Euler-Lagrange equations are

$$v_{t_j} = g_j(v_x, v_{xx}, \ldots)$$
 with $g_j = \frac{\delta_1 h_j}{\delta v_x}$

Introducing the variable $u = v_x$ we can write this as

$$u_{t_j} = D_x g_j(u, u_x, \ldots).$$
 (cf. KdV)

This equation is Hamiltonian with Hamilton function h_j w.r.t. the Poisson bracket

$$\left\{ \int f, \int g \right\} = \int \left(D_{\mathsf{X}} \frac{\delta_{1} f}{\delta u} \right) \frac{\delta_{1} g}{\delta u}$$

on equivalence classes $(\int \cdot) \mod x$ -derivatives.

If the pluri-Lagrangian two form $\sum_{i,j} L_{ij} \mathrm{d}t_i \wedge \mathrm{d}t_j$ is closed on solutions, then the Hamiltonians are in involution: $\left\{\int h_i, \int h_j\right\} = 0$

Relation to variational symmetries

[Petrera, Suris. Variational symmetries and pluri-Lagrangian systems in classical mechanics. In preparation.]

Consider a mechanical Lagrangian $L(q, q_t)$.

We say that a (generalized) vector field $V(q, q_t)$ is a variational symmetry if there exists a function $F(q, q_t)$, called the flux, such that

$$D_V L(q, q_t) - D_t F(q, q_t) = 0.$$

Noether's Theorem

If $V(q, q_t)$ is a variational symmetry with flux $F(q, q_t)$, then

$$J(q, q_t) = \frac{\partial L(q, q_t)}{\partial q_t} \cdot V(q, q_t) - F(q, q_t)$$

is an integral of motion.

Relation to variational symmetries

If we have a variational symmetry V with flux F and Noether integral J, then there is a pluri-Lagrangian one-form

$$\mathcal{L} = L_1(q, q_{t_1}, q_{t_2}) dt_1 + L_2(q, q_{t_1}, q_{t_2}) dt_2$$

with

$$\begin{split} L_1(q,q_{t_1},q_{t_2}) &= L(q,q_{t_1}) \\ L_2(q,q_{t_1},q_{t_2}) &= \frac{\partial L(q,q_{t_1})}{\partial q_{t_1}} \cdot q_{t_2} - J(q,q_{t_1}) \\ &= \frac{\partial L(q,q_{t_1})}{\partial q_{t_1}} \cdot (q_{t_2} - V(q,q_{t_1})) + F(q,q_{t_1}) \end{split}$$

which produces the equations of motion

$$\frac{\partial L}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t_1} \frac{\partial L}{\partial q_{t_1}} = 0$$
 and $q_{t_2} = V(q, q_{t_1})$

If we have k commuting variational symmetries, we can produce a pluri-Lagrangian system in k+1 dimensions.

Open question: continuum limits

Form the discrete KdV equation

$$(x - x_{12})(x_2 - x_1) = \alpha_1 - \alpha_2$$
 (dKdV)

the whole KdV hierarchy can be obtained using clever continuum limits.

Can we relate the discrete pluri-Lagrangian structure of (dKdV) with the continuous pluri-Lagrangian structure of the KdV hierarchy?

More general, is there a 1 to 1 correspondence between discrete and continuous pluri-Lagrangian systems?

References

Main:

Suris, Vermeeren. On the Lagrangian structure of integrable hierarchies.

In Advances in Discrete Differential Geometry, Springer 2016.

Discretize the theory, not just the equations

References

Main:

 Suris, Vermeeren. On the Lagrangian structure of integrable hierarchies.
 In Advances in Discrete Differential Geometry, Springer 2016.

Other:

- Adler, Bobenko, Suris. Classification of integrable equations on quad-graphs. The consistency approach. Commun. Math. Phys. 2003.
- ▶ Lobb, Nijhoff. Lagrangian multiforms and multidimensional consistency. J. Phys. A. 2009.
- Boll, Petrera, Suris. What is integrability of discrete variational systems? Proc. R. Soc. A. 2014.
- ▶ Petrera, Suris. Variational symmetries and pluri-Lagrangian systems in classical mechanics. In preparation.