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Integrable systems
Many different contexts, many different definitions.

Intuitive meaning
An integrable system is (a system of) nonlinear differential or difference
equation(s), that behaves as if it were linear:

» Solvability (in some sense)

» Superposition principle (for special solutions)

» Rich hidden structure explaining nice behavior

That structure can take many shapes. For us, it will always be a variation
the following idea:

Vague definition

An equation is integrable if it is part of a “sufficiently large” system of
“compatible” equations.
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Hamiltonian Systems

Hamilton function

H: RN ~ T°Q - R:(q,p) — H(g,p)

determines dynamics:

. OH
= o
. OH
P

Geometric interpretation:
» Phase space T*@ with canonical symplectic 2-form w
» flow along vector field Xy determined by 1x,w = dH

» the flows consists of symplectic maps and preserves H.
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Poisson Brackets

Poisson bracket of two functionals on T*Q:

N
of g  Of Og
fgl= - = f
{f.g} i§:1 ( 9090 Op; aq,-> w(VFf,Vg)

Dynamics of a Hamiltonian system:

. ) d

Qi:{CIhH}, pi:{th}a Ef(qap):{f(qvpLH}
Properties:

anti-symmetry: {f,g} = —{g,f}
bilinearity: {f,g + Ah} = {f, g} + M f, h}
Leibniz property: {f,gh} = {f,g}h+ g{f, h}
Jacobi identity: {f,{g,h}} +{g,{h, f}} +{h,{f,g}} =0

Any bracket with these properties supports Hamiltonian systems.
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Liouville-Arnold integrability

A Hamiltonian system with Hamilton function H : R?N — R is
Liouville-Arnold integrable if there exist N functionally independent
Hamilton functions H = Hq, H,, ... Hy such that

{Hi,H;} = 0.

In particular, this implies that the flows commute.
(In fact {H;, H;} = const would be sufficient.)

The evolution of a Liouville-Arnold integrable system is linear on a
topological N-torus.
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Lagrangian Mechanics
Lagrange function

L:RN=TQ - R:(q,9)~ L(q,9)
determines dynamics:

Flow along curves g(t) that minimize (or are critical points of) the action

/ " Lq(e), a() de

0

where the integration interval [tp, t1] and the boundary values g(ty) and
q(t1) are fixed.

t
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Lagrangian Mechanics

This is called a variational principle, because the equations of motion can

be derived formally using infinitesimal variations §q of the curve g. The
curve is a critical points if

o=5/ L(g(t). (1)) dt

to
oL oL

= —dq + —<dqdt
t, 0q g

oL d oL oL
/tg <3q dt@q) I <3q q)

to
Euler-Lagrange Equation(s):
% — i% = for scalar
dq dtdg 9
oL d oL
————=0 fori=1,...,N if g e RV
dq;  dt g, 0 or i e if g€
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Lagrangian Mechanics

This is called a variational principle, because the equations of motion can

be derived formally using infinitesimal variations §q of the curve g. The
curve is a critical points if

0= | " L(a(), a() dt

0

b9l oL
/to toe] 7 toe] 7

/oL d oL oL
= — — —— | dgdt + ﬁb
/to <3q dt@q) 7 <0q q)

Euler-Lagrange Equation(s):

5]

to

oL — d oL = for scalar
dq dtdg 9
oL d oL

-— = fori=1,....N if RN
dq;  dt g, 0 or i ey if g €
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Legendre transformation
Relates Hamiltonian and Lagrangian formalism:
pq = H(q,p) + L(q,d).

Differentiating w.r.t. g, p and gq,

oL
P~ 04
. OH
o

o OH 0L _(0H N (0L doL

09 0qg  \Oq P Oq dtdq)’
establishes equivalence between Hamiltonian and Lagrangian equations of
motion.

For Hamiltonian systems “built on" different Poisson brackets the relation
is not so obvious.
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Example: Toda Lattice

Configuration variable g € RN, positions of N particles on a line.

di+1 qi (gi-1

Lagrangian:

The Euler-Lagrange equations are

oL daL
- dq;  dtdq;

= @9~ qi-1 _ g9i+1—Gi _ di,
so the dynamics are determined by

G; = %G1 _ g1 Gi

This is the first of an infinite hierarchy of compatible ODEs.
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Lagrangian PDEs
Lagrangian density L(v, Vi, Vi, Vit, Vity Vs - - -)

Action § = /L dxdt

Look for a function v that is a critical point of the action, i.e. for arbitrary

infinitesimal variations dv:

0=468= /5L dxdt—/ E —(5v, dxdt
oL
= E _1M
/ I (-1) <D/8VI>5V dxdt

Euler-Lagrange equation:

oL oL
oC Nl
ov ' Z( 1) D’@v, 0

If I =(i,...,ix) then D; = dn o dk g vi = Dyv.

die, 5] dk ty
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Example: KdV equation

Lagrangian density L = %vxvt -3

1
Vi = 5 VxVxxx

Euler-Lagrange Equation:

oL oL
2= _ _p, ==
0 ov Z( ) l(?v,

oL oL oL oL oL

= — — ——DX— Dxx__Dxxx—
ov tth Ovy + OVix OViox *

1 1 o1 1
= ——Dt(VX) - EDX(Vt) + 3DX(VX) + §DX(VXXX) + EDXXX(VX)

2
= —Vxt t+ 6Vx Vx T Vixxxx

= Vit = OViVx + Vixx
Substitute u = vy to find the Korteweg-de Vries equation

Uy = OUUy + Usyx-

Or integrate to find the Potential Korteweg-de Vries equation

2
Ve = 3V + Vixx-
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Main question

Integrable systems like the Toda lattice and the KdV equation come with
infinite hierarchies. Each individual equation is Lagrangian/Hamiltonian.

On the Hamiltonian side it is clear when the equations of a hierarchy fit
together: {H;, H;} = 0.

What about the Lagrangian side?

Is there a variational description of an integrable hierarchy?

Mats Vermeeren (TU Berlin) Variational structure for integrable hierarchies October 6, 2016 14 / 34



© Discrete pluri-Lagrangian systems
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Inspiration: lattice equations

Quad equation:

X2 X12
Q(x, x1, X2, X12, 1, 00) = 0
(8%
Subscripts of x denote lattice shifts,
o1, (xp are parameters. a1
Invariant under symmetries of the square, X1

affine in each of x, x1, x2, x12.

Integrability for systems quad equations:
Multi-dimensional consistency of

Q(X,X;,Xj,Xi_j,Oé,‘,Oéj) = Oa

i.e. the three ways of calculating xj23
give the same result.
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Inspiration: lattice equations

» Classification integrable quad equations:
[Adler, Bobenko, Suris. Classification of integrable equations on
quad-graphs. The consistency approach. Commun. Math. Phys.
2003.]

» Variational formulation for all of them:

[Lobb, Nijhoff. Lagrangian multiforms and multidimensional
consistency. J. Phys. A. 2009.]

Pluri-Lagrangian structure for quad equations

For some discrete 2-form L(cojj) = L(x, x;, Xj, Xjj, i, &), the action
> s L(0j) is critical on all 2-surfaces S in NV simultaneously.
ij

I % Furthermore, the value of the

action does not depend on the
surface, i.e. the discrete 2-
form L is closed.
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Example

For the discrete KdV equation (x — x;)(x; — X;) — &j + aj = 0 we have the

Lagrangian
L(x, i, Xj, xij, i, o) = (xi — xj)x — (aj — ;) log(x; — xj)

We look at elementary corners of an arbitrary surface:

b
(a) . (b) X, i
ik q 0
X
q
k Xik
X;; X
ij y ij
i x; /
o
X X; X X,

i

Depending on the orientation, we get the criticality conditions

Qj — Ok ap — Q;j
(a) xij — X — + =0,
Xj — Xk Xj — X_j
Q; — Ok ap — Qg
(b) xi—x—— + =0
Xij = Xk Xij = Xjk
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Example

Q; — O Oé,'—Oéj
(@) xij — xik — + =0,
Xi — Xk X,‘—Xj

Qj — Q) o — Qg
(b) x;i—xj— —2 + = =0
Xij = Xik  Xij = Xjk

The conditions for other elementary shapes (flat or edge), follow from
these.

They are consequences of, but not equivalent to, the discrete KdV
equation
(x = xij)(xi — xj) — aj + oj = 0.

Recall KdV: The Euler-Lagrange equation was a consequence of, but not
equivalent to, the potential KdV equation.

Details e.g. in [Boll, Petrera, Suris. What is integrability of discrete
variational systems? Proc. R. Soc. A. 2014.]
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Continuous analogue

2D Pluri-Lagrangian structure

Field v on multi-time RV,

L= Zi,j L,-j[u] dt; A dt;.

Action fs L is critical on all smooth 2-surfaces S in RN

Possible for any dimension: field u on multi-time RV,

L= Zil,,..,id L,-lm,-d[u] dt; Ao Adt,.

Action [ L is critical on all smooth d-surfaces S in RV.
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The 1D case
Consider a Lagrangian one-form £ = Z Li[u] dt;

Lemma
If the action fs L is critical on all stepped curves S ;
in RN, then it is critical on all smooth curves. |7_

Indeed, [ L~ [5 L= [}, dL, where OM = $;US,.

By choosing a fine approximation, M can be made

arbitrarily small. ‘s
J

Variations are local, so it is sufficient to look at a
general L-shaped curve S = 5; U §;.
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Multi-time Euler-Lagrange equations for the 1D case

The variation of the action on S; is

5/Ldt,_/28—u(5u,dt
)
/Z_(Su/dt’+25 Ure

Si 15t;
where | denotes a multi-index, and

%_i_)ad_a oL, oL d 0oL

ouy dth 8U[t;x N ouy B d_t,-au,t,.

J+2
dtl 8ulti2

tj

d? oL,

Multi-time Euler-Lagrange equations for curves, £ =", L;[u] dt;

OiL; OiL;
1=
=0 VI &t and
(5 uy 1) up;
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The 2D case

Consider a Lagrangian two-form
L= Z L,'j[u] dt; A dtj.
iJj
It is sufficient to look at stepped surfaces and
their elementary corners.

An arbitrary number k of planes can meet in
one point, forming a k-flower.
A k-flower can be decomposed into 3-flowers.
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The 2D case

Multi-time EL equations for 2D surfaces, £ =}, ; L[u] dt; A dt;
55l

=0 VI Zti, t
(5”[ % 15 &
(S,JL,_, 5ikLik
S e
5ultj 5ultk z I
Sily  Suli  Owili
= vl
5u/t,'tj 5ultjtk 5u/tkt,'
Where

oo o0
5ULU

arg d¢ d?  oL;
5o ZZ )+,Bd ij

a1 B
=0 =0 ttau

oby _ d oby _ d oLy jfi OLj
N Ouy dt; 6u,t, dtj au/tj dt‘l-2 8u,t,.t,

d d oLy & oL
dt, dt_/ al.l/t t dtJ2 8”/1_-].1
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Example: Toda hierarchy

L = Li[q]dts + Lz[qg]dt> Gr an D

1 —
L]_ [q] = Z §(qk)%1 — eqk qk—1
k

Lo[q] = Z(qk)tl(qk)t2 + %(qk)‘:’l + ((gk—1) g + (qi) gy )< 1
k

01L1

dqk
oL B
52qk2 =0 = (9)une = ((gk)n + (qry1)s et ™%

=0 = (q)yyy = W% — Ik~ dk-1

— ((gk=-1)t; + (qr)s, ) eIk 91
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Example: Toda hierarchy

L = Li[q]dt; + Lo[qg]dt Qi1 Gr Gkt

1 _
Ll [q] = Z §(qk)%1 — eqk qk—1
k

Lo[q] = Z(qk)f]_(qk)t2 + %(qk)‘z + ((gk—1) g + (qi) gy )< 1

k
o1L
o141 =0 = (qk)t1t1 — e¥+179k _ oGk~ Gk—1
dqk
52L2 Ak+1—dk
Sk 0 = (9)ae = ((g)a + (gk+1)u)e
— ((qk=1)t, + (qi)r, )T
52/.2 5 _ _
=0 = = — + edk+17 Gk _ o9k~ k-1
5(q1)e, (Gk)t, (qk)t1
51L1 . (52L2

S(a)e,  6(qk)n (9k)t, = (qi)e,
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Example: Toda hierarchy

£ = hilgldt + Lo[qldt, k1 Gk Gk—1

1 .
Lafd] = 3 5@ — e o
k

Lo[q] = Z(qk)f]_(qk)f2 + %(qk)‘;’l + ((gk—1) g + (qi) gy )< 1

k
o1L
o141 =0 = (qk)t1t1 — e¥+179k _ oGk~ Gk—1 (1)
dqk
52L2 Qk+1—9k
S 0 = (g)ae = ((a)s + (gk+1)n)e
— ((qk—1) + (qr)ey Je? %2
(follows from (1) and (2))
dols 5 _ B
=0 = = — + edk+17 Gk _ @9k~ k-1 2
5(qk)tl (qk)fz (qk)t1 ( )
01L4 dolo

= (g.).. = (g

Variational structure for integrable hierarchies

(trivial)
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Example: Toda hierarchy

» The pluri-Lagrangian formalism produces the 2nd flow in its
evolutionary form: (qk)s, = . ... (Same for higher flows.)

The classical Lagrangian formalism only gives the differentiated flow:
(qk)tltz =

» L, and the higher Lagrangians are closely related to the variational
symmetries of L.

[Petrera, Suris. Variational symmetries and pluri-Lagrangian systems
in classical mechanics. In preparation.]
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Example: Potential KdV hierarchy

Vi, = gZ[V] = Vixx + 3V3a

Vs = 83[V] = Vioooor + 10V Viex + 5v3x + 10v3,
where we identify t; = x.

The differentiated equations vy, = %g,-[v] are Lagrangian with

1 1 ;
I—12 = EVthg - EVXVXXX — Vg,

2 2 2 S 4
L1z = EVXVt3 — Vi Vioox — 2Vsx Vioox — EVXXX + 5VX Vixx + 5VXVXX + EVX-

We choose the coefficient Loz of
L= L12[U] dtg Adtr + L13[U] dty Adts + L23[U] dt, Adts

such that the pluri-Lagrangian 2-form is closed on solutions. It is of the
form

Loy = S (vegslv] = vugalv)) + pasl)
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Example: Potential KdV hierarchy

» The equations

d12L12 013L13
5y = 0 and Sy 0

are 1 1
Vt, = &gz[v] and Vs = &gg,[v].

» The equations

d12L12  d32L32 013L13  d23l23
= and =
(SVX 5Vt3 6VX (5Vt2

yield
Vi, =&  and vy = g3,
the evolutionary equations!

> All other multi-time EL equations are corollaries of these.
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Relation to Hamiltonian formalism
Consider a pluri-Lagrangian two form Z,-J Lidt; A dt; with

Ly = vxvt hi(Vis Vi - - )
and Lj; such that the multi-time Euler-Lagrange equations are
(51hj

OVy

v, = &j(Vie, Vax - - -) with gj =
Introducing the variable u = v, we can write this as

uy, = Dxgj(u, ux, .. .). (cf. )

This equation is Hamiltonian with Hamilton function h; w.r.t. the Poisson

bracket 5N 5
f, 1 18
(r.fe) = [ (0.20) 2
on equivalence classes ([ -) mod x-derivatives.

If the pluri-Lagrangian two form Z - Lijdt; A\ dtj is closed on solutions,
then the Hamiltonians are in |nvolut|on. {[hi, [hj} =0
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Relation to variational symmetries

[Petrera, Suris. Variational symmetries and pluri-Lagrangian systems in
classical mechanics. In preparation.]

Consider a mechanical Lagrangian L(q, g;).

We say that a (generalized) vector field V/(q, g:) is a variational symmetry
if there exists a function F(q, g¢), called the flux, such that

Dy L(q,q:) — D:tF(q, g:) = 0.

Noether’'s Theorem

If V(q,q¢) is a variational symmetry with flux F(q, g:), then

OlL(q,
J(q,q:) = % -V(q,9:) — F(q,q:)

is an integral of motion.

Mats Vermeeren (TU Berlin) Variational structure for integrable hierarchies October 6, 2016 31/ 34



Relation to variational symmetries

If we have a variational symmetry V with flux F and Noether integral J,

then there is a pluri-Lagrangian one-form

ﬁ - Ll(q7 qt:» qtg) dtl + LZ(qa qt;» qu) dt2

with
L1(q, 94, 95) = L(q, 1)
oL(q,q
L2(q7 at; 5 qtz) = E.atl) “qdt, — J(q7 qtl)
qtl
dL(q,
= M) (g, V(g q0) + Fla.90)
qtl
which produces the equations of motion
oL d oL
— - = d =V
aq dt]_ aqtl an qt2 (q’ qtl)

If we have k commuting variational symmetries, we can produce a
pluri-Lagrangian system in k 4+ 1 dimensions.
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Open question: continuum limits

Form the discrete KdV equation
(x —x12)(x2 — x1) = a1 — 2 (dKdV)

the whole KdV hierarchy can be obtained using clever continuum limits.

Can we relate the discrete pluri-Lagrangian structure of (dKdV) with the
continuous pluri-Lagrangian structure of the KdV hierarchy?

More general, is there a 1 to 1 correspondence between discrete and
continuous pluri-Lagrangian systems?
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