Modified Equations for Variational Integrators

Mats Vermeeren

Technische Universität Berlin

IIMAS, UNAM
August 23, 2018

Table Of Contents

(1) Variational and symplectic integrators [1]
(2) Modified Equations [1]
(3) A meshed modified Lagrangian [2]
(4) A true modified Lagrangian [2]
(5) Variational integration of the Kepler problem [3]
(6) A class of degenerate Lagrangians [4]
[1] Hairer, Lubich, Wanner. Geometric Numerical Integration. Springer, 2006.
[2] V. Modified equations for variational integrators. Numer. Math. 137:1001, 2017.
[3] V. Numerical precession in variational discretizations of the Kepler problem. arXiv:1602.01049.
[4] V. Modified equations for variational integrators applied to Lagrangians linear in velocities. arXiv:1709.09567.

Table Of Contents

(1) Variational and symplectic integrators [1]
(2) Modified Equations [1]
(3) A meshed modified Lagrangian [2]
(a) A true modified Lagrangian [2]
(5) Variational integration of the Kepler problem [3]
(6) A class of degenerate Lagrangians [4]
[1] Hairer, Lubich, Wanner. Geometric Numerical Integration. Springer, 2006.
[2] V. Modified equations for variational integrators. Numer. Math. 137:1001, 2017.
[3] V. Numerical precession in variational discretizations of the Kepler problem. arXiv:1602.01049.
[4] V. Modified equations for variational integrators applied to Lagrangians linear in velocities. arXiv:1709.09567.

Continuous Lagrangian Mechanics

Lagrange function: $L: \mathbb{R}^{2 N} \cong T Q \rightarrow \mathbb{R}:(q, \dot{q}) \mapsto L(q, \dot{q})$.
Solutions are curves $q(t)$ that minimize (or are critical points of) the action

$$
S=\int_{t_{0}}^{t_{1}} L(q(t), \dot{q}(t)) \mathrm{d} t
$$

where the integration interval $\left[t_{0}, t_{1}\right]$ and the boundary values $q\left(t_{0}\right)$ and $q\left(t_{1}\right)$ are fixed.

$$
\begin{aligned}
0=\delta S & =\int_{t_{0}}^{t_{1}} \frac{\partial L}{\partial q} \delta q+\frac{\partial L}{\partial \dot{q}} \delta \dot{q} \mathrm{~d} t \\
& =\int_{t_{0}}^{t_{1}}\left(\frac{\partial L}{\partial q}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}}\right) \delta q \mathrm{~d} t+\left.\left(\frac{\partial L}{\partial \dot{q}} \delta q\right)\right|_{t_{0}} ^{t_{1}}
\end{aligned}
$$

Euler-Lagrange Equation: $\frac{\partial L}{\partial q}-\frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial L}{\partial \dot{q}}=0$.

Continuous Lagrangian Mechanics

Lagrange function: $L: \mathbb{R}^{2 N} \cong T Q \rightarrow \mathbb{R}:(q, \dot{q}) \mapsto L(q, \dot{q})$.
Solutions are curves $q(t)$ that minimize (or are critical points of) the action

$$
S=\int_{t_{0}}^{t_{1}} L(q(t), \dot{q}(t)) \mathrm{d} t
$$

where the integration interval $\left[t_{0}, t_{1}\right]$ and the boundary values $q\left(t_{0}\right)$ and $q\left(t_{1}\right)$ are fixed.

$$
\begin{aligned}
0=\delta S & =\int_{t_{0}}^{t_{1}} \frac{\partial L}{\partial q} \delta q+\frac{\partial L}{\partial \dot{q}} \delta \dot{q} \mathrm{~d} t \\
& =\int_{t_{0}}^{t_{1}}\left(\frac{\partial L}{\partial q}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}}\right) \delta q \mathrm{~d} t+\left.\left(\frac{\partial L}{\partial \dot{q}} \delta q\right)\right|_{t_{0}} ^{t_{1}}
\end{aligned}
$$

Euler-Lagrange Equation: $\frac{\partial L}{\partial q}-\frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial L}{\partial \dot{q}}=0$.

Legendre transformation

Relates Hamiltonian and Lagrangian formalism:

$$
p \dot{q}=H(q, p)+L(q, \dot{q})
$$

Differentiating w.r.t. \dot{q}, p and q,

$$
\begin{aligned}
& p=\frac{\partial L}{\partial \dot{q}} \\
& \dot{q}=\frac{\partial H}{\partial p} \\
& 0=\frac{\partial H}{\partial q}+\frac{\partial L}{\partial q}=\left(\frac{\partial H}{\partial q}+\dot{p}\right)+\left(\frac{\partial L}{\partial q}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}}\right)
\end{aligned}
$$

establishes equivalence between Lagrangian and Hamiltonian equations of motion.

Legendre transformation

Relates Hamiltonian and Lagrangian formalism:

$$
p \dot{q}=H(q, p)+L(q, \dot{q})
$$

Differentiating w.r.t. \dot{q}, p and q,

$$
\begin{aligned}
& p=\frac{\partial L}{\partial \dot{q}} \\
& \dot{q}=\frac{\partial H}{\partial p} \\
& 0=\frac{\partial H}{\partial q}+\frac{\partial L}{\partial q}=\left(\frac{\partial H}{\partial q}+\dot{p}\right)+\left(\frac{\partial L}{\partial q}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}}\right)
\end{aligned}
$$

establishes equivalence between Lagrangian and Hamiltonian equations of motion.
Only works if the Lagrangian is nondegenerate: $\left|\frac{\partial^{2} L}{\partial \dot{q}^{2}}\right| \neq 0$
Hamiltonian systems preserve the symplectic 2-form $\omega=\sum_{i} \mathrm{~d} p_{i} \wedge \mathrm{~d} q_{i}$.

Symplectic structure

Let Φ_{t} be the flow of a Hamiltonian system, i.e.

$$
\Phi_{0}(q, p)=(q, p)
$$

and

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \Phi_{t}(q, p)=\left(\frac{\partial H}{\partial p}\left(\Phi_{t}(q, p)\right),-\frac{\partial H}{\partial q}\left(\Phi_{t}(q, p)\right)\right) .
$$

Then for each t, Φ_{t} is a symplectic map,

$$
\Phi_{t}^{*} \omega=\omega
$$

where ω is the canonical symplectic form

$$
\omega=\sum_{i} \mathrm{~d} q_{i} \wedge \mathrm{~d} p_{i}
$$

Definition

A symplectic integrator is a discretization (in time) of a Hamiltonian systems, such that each discrete time-step is given by a symplectic map.

Discrete Lagrangian mechanics

Lagrange function: $L: \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}:(x, \tilde{x}) \mapsto L(x, \tilde{x})$.
Solutions are discrete curves $x=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ that are critical points of the action

$$
S_{\mathrm{disc}}=\sum_{j=1}^{n} h L_{\mathrm{disc}}\left(x_{j-1}, x_{j}\right)
$$

Euler-Lagrange equation:

$$
\mathrm{D}_{2} L_{\mathrm{disc}}\left(x_{j-1}, x_{j}\right)+\mathrm{D}_{1} L_{\mathrm{disc}}\left(x_{j}, x_{j+1}\right)=0
$$

where D_{1}, D_{2} denote the partial derivatives of $L_{\text {disc }}$.

Definition

A variational integrator for a continuous system with Lagrangian \mathcal{L} is a discrete Lagrangian system with

$$
L_{\mathrm{disc}}(x(t-h), x(t)) \approx \mathcal{L}(x(t), \dot{x}(t))
$$

and hence $S_{\text {disc }} \approx S$.

Equivalence

Theorem

If the Lagrangian/Hamiltonian is regular, variational and symplectic integrators are equivalent.

Proof. the discrete Lagrangian is a generation function of the symplectic map describing one time step,

$$
\begin{aligned}
p_{j} & =-h \mathrm{D}_{1} L_{\mathrm{disc}}\left(x_{j}, x_{j+1}\right) \\
p_{j+1} & =h \mathrm{D}_{2} L_{\mathrm{disc}}\left(x_{j}, x_{j+1}\right)
\end{aligned}
$$

Example: Störmer-Verlet method

Consider a mechanical system $\ddot{x}=-U^{\prime}(x)$ with Lagrangian

$$
\mathcal{L}(x, \dot{x})=\frac{1}{2}\langle\dot{x}, \dot{x}\rangle-U(x)
$$

The Störmer-Verlet discretization is given by the discrete Lagrangian

$$
L_{\mathrm{disc}}\left(x_{j}, x_{j+1}\right)=\frac{1}{2}\left\langle\frac{x_{j+1}-x_{j}}{h}, \frac{x_{j+1}-x_{j}}{h}\right\rangle-\frac{1}{2} U\left(x_{j}\right)-\frac{1}{2} U\left(x_{j+1}\right)
$$

Its discrete Euler-Lagrange equation is $\frac{x_{j+1}-2 x_{j}+x_{j-1}}{h^{2}}=-U^{\prime}\left(x_{j}\right)$

Example: Störmer-Verlet method

Consider a mechanical system $\ddot{x}=-U^{\prime}(x)$ with Lagrangian

$$
\mathcal{L}(x, \dot{x})=\frac{1}{2}\langle\dot{x}, \dot{x}\rangle-U(x)
$$

The Störmer-Verlet discretization is given by the discrete Lagrangian

$$
L_{\mathrm{disc}}\left(x_{j}, x_{j+1}\right)=\frac{1}{2}\left\langle\frac{x_{j+1}-x_{j}}{h}, \frac{x_{j+1}-x_{j}}{h}\right\rangle-\frac{1}{2} U\left(x_{j}\right)-\frac{1}{2} U\left(x_{j+1}\right)
$$

Its discrete Euler-Lagrange equation is $\frac{x_{j+1}-2 x_{j}+x_{j-1}}{h^{2}}=-U^{\prime}\left(x_{j}\right)$
Abstract notation: $\psi\left(x_{j-1}, x_{j}, x_{j+1} ; h\right)=0$ with

$$
\psi\left(x_{j-1}, x_{j}, x_{j+1} ; h\right)=\frac{x_{j+1}-2 x_{j}+x_{j-1}}{h^{2}}+U^{\prime}\left(x_{j}\right)
$$

Symplectic equivalent:

$$
\begin{aligned}
& x_{j+1}=x_{j}+h p_{j}-\frac{h^{2}}{2} U^{\prime}\left(x_{j}\right) \\
& p_{j+1}=p_{j}-\frac{h}{2} U^{\prime}\left(x_{j}\right)-\frac{h}{2} U^{\prime}\left(x_{j+1}\right)
\end{aligned}
$$

Table Of Contents

(1) Variational and symplectic integrators [1]
(2) Modified Equations [1]
(3) A meshed modified Lagrangian [2]

4 A true modified Lagrangian [2]
(3) Variational integration of the Kepler problem [3]
(6) A class of degenerate Lagrangians [4]
[1] Hairer, Lubich, Wanner. Geometric Numerical Integration. Springer, 2006.
[2] V. Modified equations for variational integrators. Numer. Math. 137:1001, 2017.
[3] V. Numerical precession in variational discretizations of the Kepler problem. arXiv:1602.01049.
[4] V. Modified equations for variational integrators applied to Lagrangians linear in velocities. arXiv:1709.09567.

Modified Equations

Exact solution of a differential equation:

Numerical solution with a variational integrator:

Notice conservation of Energy:

- Easy to prove for (continuous) Hamiltonian systems
- Follows by Noether's theorem from invariance under time-translation of the Lagrangian
- Symplectic/variational integrators very nearly preserve energy. Why?

Modified Equations

Conservation of Energy:

- Easy to prove for (continuous) Hamiltonian systems
- Follows by Noether's theorem from invariance under time-translation of the Lagrangian
- Symplectic/variational integrators very nearly preserve energy. Why?

Idea of proof: find a modified equation, a differential equation with solutions that interpolate the numerical solutions:

Modified Equations

Modified equations are usually given by power series.
Often they do not converge.

Definition

The differential equation $\ddot{x}=f(x, \dot{x} ; h)$, where

$$
f(x, \dot{x} ; h) \simeq f_{0}(x, \dot{x})+h f_{1}(x, \dot{x})+h^{2} f_{2}(x, \dot{x})+\ldots
$$

is a modified equation for the second order difference equation $\Psi\left(x_{j-1}, x_{j}, x_{j+1} ; h\right)=0$ if, for every k, every solution of the truncated differential equation

$$
\begin{aligned}
\ddot{x} & =\mathcal{T}_{k}\left(f_{h}(x, \dot{x})\right) \\
& =f_{0}(x, \dot{x})+h f_{1}(x, \dot{x})+h^{2} f_{2}(x, \dot{x})+\ldots+h^{k} f_{k}(x, \dot{x})
\end{aligned}
$$

satisfies

$$
\Psi(x(t-h), x(t), x(t+h) ; h)=\mathcal{O}\left(h^{k+1}\right)
$$

Modified Equations for symplectic integrators

Symplectic integrators are known the very nearly preserve energy, because

Theorem

The modified equation for a symplectic integrator is a Hamiltonian equation.

Can we arrive at a similar result purely on the Lagrangian side?
Are modified equations for variational integrators Lagrangian?

Table Of Contents

(1) Variational and symplectic integrators [1]
(2) Modified Equations [1]
(3) A meshed modified Lagrangian [2]
(4) A true modified Lagrangian [2]
(5) Variational integration of the Kepler problem [3]
(3) A class of degenerate Lagrangians [4]
[1] Hairer, Lubich, Wanner. Geometric Numerical Integration. Springer, 2006.
[2] V. Modified equations for variational integrators. Numer. Math. 137:1001, 2017.
[3] V. Numerical precession in variational discretizations of the Kepler problem. arXiv:1602.01049.
[4] V. Modified equations for variational integrators applied to Lagrangians linear in velocities. arXiv:1709.09567.

General idea

Look for a modified Lagrangian $\mathcal{L}_{\text {mod }}(x, \dot{x})$ such that the discrete Lagrangian $L_{\text {disc }}$ is its exact discrete Lagrangian, i.e.

$$
\int_{(j-1) h}^{j h} \mathcal{L}_{\bmod }(x(t), \dot{x}(t)) \mathrm{d} t=h L_{\text {disc }}(x((j-1) h), x(j h)) .
$$

The Euler-Lagrange equation of $\mathcal{L}_{\text {mod }}$ will then be the modified equation. The best we can hope for is to find such a modified Lagrangian up to an error of arbitrarily high order in h.

The discrete Lagrangian evaluated on a continuous curve

 We can write the discrete Lagrangian as a function of x and its derivatives, all evaluated at the point $j h-\frac{h}{2}$,$$
\begin{aligned}
\mathcal{L}_{\text {disc }}[x]= & L_{\text {disc }}\left(x-\frac{h}{2} \dot{x}+\frac{1}{2}\left(\frac{h}{2}\right)^{2} \ddot{x}-\ldots,\right. \\
& \left.x+\frac{h}{2} \dot{x}+\frac{1}{2}\left(\frac{h}{2}\right)^{2} \ddot{x}+\ldots, \quad h\right) . \\
= & L_{\text {disc }}\left(x_{j-1}, x_{j} ; h\right)
\end{aligned}
$$

Here and in the following:

- $[x]$ denotes dependence on x and any number of its derivatives,
- we evaluate at $t=j h-\frac{h}{2}$ whenever we omit the variable t, i.e. $x=x\left(j h-\frac{h}{2}\right)$,
- $x_{j}=x(j h)$ and $x_{j-1}=x((j-1) h)$.

A truly continuous Lagrangian

We want to write the discrete action

$$
S_{\mathrm{disc}}=\sum_{j=1}^{n} h L_{\mathrm{disc}}\left(x_{j-1}, x_{j}\right)=\sum_{j=1}^{n} h \mathcal{L}_{\mathrm{disc}}\left[x\left(j h-\frac{h}{2}\right)\right]
$$

as an integral.
Lemma (Euler-MacLaurin formula)
For any smooth function $f: \mathbb{R} \rightarrow \mathbb{R}^{N}$ we have

$$
\begin{aligned}
\sum_{j=1}^{n} h f\left(j h-\frac{h}{2}\right) & \simeq \int_{0}^{n h} \sum_{i=0}^{\infty} h^{2 i}\left(2^{1-2 i}-1\right) \frac{B_{2 i}}{(2 i)!} f^{(2 i)}(t) \mathrm{d} t \\
& =\int_{0}^{n h}\left(f(t)-\frac{h^{2}}{24} \ddot{f}(t)+\frac{7 h^{4}}{5760} f^{(4)}(t)+\ldots\right) \mathrm{d} t
\end{aligned}
$$

where B_{i} are the Bernoulli numbers.
The symbol \simeq indicates that this is an asymptotic series.

A truly continuous Lagrangian

Definition

We call

$$
\begin{aligned}
\mathcal{L}_{\text {mesh }}[x(t)] & =\mathcal{L}_{\text {disc }}[x(t)]+\sum_{i=1}^{\infty}\left(2^{1-2 i}-1\right) \frac{h^{2 i} B_{2 i}}{(2 i)!} \frac{\mathrm{d}^{2 i}}{\mathrm{~d} t^{2 i}} \mathcal{L}_{\text {disc }}[x(t)] \\
& =\mathcal{L}_{\text {disc }}[x(t)]-\frac{h^{2}}{24} \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}} \mathcal{L}_{\text {disc }}[x(t)]+\frac{7 h^{4}}{5760} \frac{\mathrm{~d}^{4}}{\mathrm{~d} t^{4}} \mathcal{L}_{\text {disc }}[x(t)]+\ldots
\end{aligned}
$$

the meshed modified Lagrangian of $L_{\text {disc }}$.
Formally, the meshed modified Lagrangian satisfies

$$
\int \mathcal{L}_{\text {mesh }}[x(t)] \mathrm{d} t=\sum h L_{\mathrm{disc}}\left(x_{j}, x_{j+1}\right)
$$

where $x_{j}=x(j h)$.

A truly continuous Lagrangian

Definition

We call

$$
\begin{aligned}
\mathcal{L}_{\text {mesh }}[x(t)] & =\mathcal{L}_{\text {disc }}[x(t)]+\sum_{i=1}^{\infty}\left(2^{1-2 i}-1\right) \frac{h^{2 i} B_{2 i}}{(2 i)!} \frac{\mathrm{d}^{2 i}}{\mathrm{dt} t^{2 i}} \mathcal{L}_{\text {disc }}[x(t)] \\
& =\mathcal{L}_{\text {disc }}[x(t)]-\frac{h^{2}}{24} \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}} \mathcal{L}_{\text {disc }}[x(t)]+\frac{7 h^{4}}{5760} \frac{\mathrm{~d}^{4}}{\mathrm{~d} t^{4}} \mathcal{L}_{\text {disc }}[x(t)]+\ldots
\end{aligned}
$$

the meshed modified Lagrangian of $L_{\text {disc }}$.
Formally, the meshed modified Lagrangian satisfies

$$
\int \mathcal{L}_{\text {mesh }}[x(t)] \mathrm{d} t=\sum h L_{\mathrm{disc}}\left(x_{j}, x_{j+1}\right)
$$

where $x_{j}=x(j h)$.
Are we finished?
$\mathcal{L}_{\text {mesh }}[x]$ depends on many more derivatives than the original $\mathcal{L}(x, \dot{x})$.

The meshed variational problem

Definition

classical variational problem: find critical curves of some action $\int_{a}^{b} \mathcal{L}[x(t)] \mathrm{d} t$ in the set of smooth curves \mathcal{C}^{∞}. meshed variational problem: find critical curves of some action $\int_{a}^{b} \mathcal{L}[x(t)] \mathrm{d} t$ in the set of piecewise smooth curves that are consistent with a mesh of size h,

$$
\begin{aligned}
\mathcal{C}^{\mathcal{M}, h}=\left\{x \in \mathcal{C}^{0}([a, b]) \mid \exists t_{0}\right. & \in[a, b]: \forall t \in[a, b]: \\
& \left.x \text { not smooth at } t \Rightarrow t-t_{0} \in h \mathbb{N}\right\} .
\end{aligned}
$$

Classical variational problem

Meshed variational problem

The meshed variational problem

Criticality conditions of a meshed variational problem:
Euler-Lagrange equations: $\frac{\delta \mathcal{L}}{\delta x}=0$,
Natural interior conditions: $\quad \forall j \geq 2: \frac{\delta \mathcal{L}}{\delta x^{(j)}}=0$,

$$
\text { or equivalently: } \forall j \geq 2: \frac{\partial \mathcal{L}}{\partial x^{(j)}}=0
$$

where

$$
\frac{\delta \mathcal{L}}{\delta x^{(j)}}=\sum_{k=0}^{\infty}(-1)^{k} \frac{\mathrm{~d}^{k}}{\mathrm{~d} t^{k}} \frac{\partial \mathcal{L}}{\partial x^{(j+k)}} .
$$

If \mathcal{L} is a non-convergent power series, these equations are formal.

The meshed variational problem

We have that $S_{\text {disc }}(x(0), x(h), \ldots)=\int \mathcal{L}_{\text {mesh }}[x] \mathrm{d} t$.
Hence the discrete action is critical if and only if $\frac{\delta \mathcal{L}_{\text {mesh }}}{\delta x}=0$.
Variations that are supported on a single mesh interval do not change the discrete action, so the cannot change $\int \mathcal{L}_{\text {mesh }}[x] \mathrm{d} t$.

Since these are the variations that produce natural interior conditions, it follows that they are automatically satisfied:

$$
\frac{\delta \mathcal{L}_{\text {mesh }}}{\delta x}=0 \quad \Rightarrow \quad \forall j \geq 2: \frac{\partial \mathcal{L}}{\partial x^{(j)}}=0
$$

The meshed variational problem

We have that $S_{\text {disc }}(x(0), x(h), \ldots)=\int \mathcal{L}_{\text {mesh }}[x] \mathrm{d} t$.
Hence the discrete action is critical if and only if $\frac{\delta \mathcal{L}_{\text {mesh }}}{\delta x}=0$.
Variations that are supported on a single mesh interval do not change the discrete action, so the cannot change $\int \mathcal{L}_{\text {mesh }}[x] \mathrm{d} t$.

Since these are the variations that produce natural interior conditions, it follows that they are automatically satisfied:

$$
\frac{\delta \mathcal{L}_{\text {mesh }}}{\delta x}=0 \quad \Rightarrow \quad \forall j \geq 2: \frac{\partial \mathcal{L}}{\partial x^{(j)}}=0
$$

IThe modified equation can be calculated as

$$
\frac{\partial \mathcal{L}_{\text {mesh }}}{\partial x}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial \mathcal{L}_{\text {mesh }}}{\partial \dot{x}}=0
$$

even though the Lagrangian $\mathcal{L}_{\text {mesh }}$ depends on higher derivatives.

Table Of Contents

(1) Variational and symplectic integrators [1]
(2) Modified Equations [1]
(3) A meshed modified' Lagrangian [2]
(4) A true modified Lagrangian [2]
(5) Variational integration of the Kepler problem [3]
(6) A class of degenerate Lagrangians [4]
[1] Hairer, Lubich, Wanner. Geometric Numerical Integration. Springer, 2006.
[2] V. Modified equations for variational integrators. Numer. Math. 137:1001, 2017.
[3] V. Numerical precession in variational discretizations of the Kepler problem. arXiv:1602.01049.
[4] V. Modified equations for variational integrators applied to Lagrangians linear in velocities. arXiv:1709.09567.

Definition

The modified Lagrangian is the formal power series

$$
\mathcal{L}_{\bmod }(x, \dot{x})=\left.\mathcal{L}_{\operatorname{mesh}}[x]\right|_{\ddot{x}=f_{h}(x, \dot{x}), x^{(3)}=\frac{\mathrm{d}}{\mathrm{~d} t} f_{h}(x, \dot{x}), \ldots},
$$

where $\ddot{x}=f_{h}(x, \dot{x})$ is the modified equation.

The k-th truncation of the modified Lagrangian is

$$
\mathcal{L}_{\bmod , k}=\mathcal{T}_{k}\left(\mathcal{L}_{\bmod }(x, \dot{x})\right)=\mathcal{T}_{k}\left(\left.\mathcal{L}_{\operatorname{mesh}}[x]\right|_{x^{(j)}=F_{k-2}^{j}(x, \dot{x})}\right)
$$

where \mathcal{T}_{k} denotes truncation after the h^{k}-term and

$$
\begin{aligned}
& \ddot{x}=F_{k}^{2}(x, \dot{x} ; h)+\mathcal{O}\left(h^{k+1}\right)=F_{k}(x, \dot{x} ; h)+\mathcal{O}\left(h^{k+1}\right), \\
& x^{(3)}=F_{k}^{3}(x, \dot{x} ; h)+\mathcal{O}\left(h^{k+1}\right), \quad x^{(4)}=F_{k}^{4}(x, \dot{x} ; h)+\mathcal{O}\left(h^{k+1}\right), \ldots
\end{aligned}
$$

are the k-th truncation of the modified equation and its derivatives.

Lemma

The meshed modified Lagrangian $\mathcal{L}_{\text {mesh }}[x]$ and the modified Lagrangian $\mathcal{L}_{\text {mod }}(x, \dot{x})$ have the same critical curves.

Proof.

$$
\begin{aligned}
\frac{\partial \mathcal{L}_{\mathrm{mod}, k}}{\partial x} & =\frac{\partial \mathcal{L}_{\text {mesh }}}{\partial x}+\frac{\partial \mathcal{L}_{\text {mesh }}}{\partial \ddot{x}} \frac{\partial F_{k}^{2}}{\partial x}+\frac{\partial \mathcal{L}_{\text {mesh }}}{\partial x^{(3)}} \frac{\partial F_{k}}{\partial x}+\left.\ldots\right|_{x^{(j)}=F_{k-1}^{j}(x, \dot{x})} \\
& =\frac{\partial \mathcal{L}_{\text {mesh }}}{\partial x}+\mathcal{O}\left(h^{k+1}\right)
\end{aligned}
$$

Also,

$$
\begin{aligned}
\frac{\partial \mathcal{L}_{\text {mod }, k}}{\partial \dot{x}} & =\frac{\partial \mathcal{L}_{\text {mesh }}}{\partial \dot{x}}+\frac{\partial \mathcal{L}_{\text {mesh }}}{\partial \ddot{x}} \frac{\partial F_{k}^{2}}{\partial \dot{x}}+\frac{\partial \mathcal{L}_{\text {mesh }}}{\partial x^{(3)}} \frac{\partial F_{k}^{3}}{\partial \dot{x}}+\left.\ldots\right|_{x} ^{(j)=F_{k-1}^{j}(x, \dot{x})} \\
& =\frac{\partial \mathcal{L}_{\text {mesh }}}{\partial \dot{x}}+\mathcal{O}\left(h^{k+1}\right) \\
\Rightarrow \frac{\partial \mathcal{L}_{\text {mod }, k}}{\partial x} & -\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial \mathcal{L}_{\text {mod }, k}}{\partial \dot{x}}=\sum_{j=0}^{\infty}(-1)^{j} \frac{\mathrm{~d}^{j}}{\mathrm{~d} t^{j}} \frac{\partial \mathcal{L}_{\text {mesh }}}{\partial x^{(j)}}+\mathcal{O}\left(h^{k+1}\right)
\end{aligned}
$$

Main result

Theorem

For a discrete Lagrangian $L_{\text {disc }}$ that is a consistent discretization of some \mathcal{L}, the k-th truncation of the Euler-Lagrange equation of $\mathcal{L}_{\bmod , k}(x, \dot{x})$ is the k-th truncation of the modified equation.

Proof. Let x be a solution of the Euler-Lagrange equation for $\mathcal{L}_{\bmod }(x, \dot{x})$. Consider the discrete curve $x_{j}=x(j h)$.

- x is critical for the action $\int \mathcal{L}_{\bmod }(x, \dot{x}) \mathrm{d} t$.
- By the Lemma, x is critical for the action $\int \mathcal{L}_{\text {mesh }}[x] \mathrm{d} t$.
- By construction, the actions $S_{\text {disc }}=\sum_{j} L_{\text {disc }}(y(j h), y((j+1) h))$ and $S=\int_{a}^{b} \mathcal{L}_{\bmod }[y(t)] \mathrm{d} t$ are equal for any smooth curve y.
- Therefore the discrete curve $(x(j h))_{j}$ is critical for the discrete action $S_{\text {disc }}$. Hence

$$
\mathrm{D}_{2} L_{\text {disc }}(x(t-h), x(t))+\mathrm{D}_{1} L_{\text {disc }}(x(t), x(t+h))=0
$$

Table Of Contents

(1) Variational and symplectic integrators [1]
(2) Modified Equations [1]
(3) A meshed modified Lagrangian [2]

4 A true modified Lagrangian [2]
(5) Variational integration of the Kepler problem [3]
(6) A class of degenerate Lagrangians [4]
[1] Hairer, Lubich, Wanner. Geometric Numerical Integration. Springer, 2006.
[2] V. Modified equations for variational integrators. Numer. Math. 137:1001, 2017.
[3] V. Numerical precession in variational discretizations of the Kepler problem. arXiv:1602.01049.
[4] V. Modified equations for variational integrators applied to Lagrangians linear in velocities. arXiv:1709.09567.

Example: Störmer-Verlet discretization

$$
\begin{aligned}
& \mathcal{L}(x, \dot{x})=\frac{1}{2}|\dot{x}|^{2}-U(x) \\
& L_{\mathrm{disc}}\left(x_{j}, x_{j+1}\right)=\frac{1}{2}\left|\frac{x_{j+1}-x_{j}}{h}\right|^{2}-\frac{1}{2} U\left(x_{j}\right)-\frac{1}{2} U\left(x_{j+1}\right) .
\end{aligned}
$$

Its Euler-Lagrange equation is

$$
\frac{x_{j+1}-2 x_{j}+x_{j-1}}{h^{2}}=-U^{\prime}\left(x_{j}\right)
$$

We have

$$
\begin{aligned}
\mathcal{L}_{\mathrm{disc}}[x]= & \left\langle\dot{x}+\frac{h^{2}}{24} x^{(3)}+\ldots, \dot{x}+\frac{h^{2}}{24} x^{(3)}+\ldots\right\rangle \\
& -\frac{1}{2} U\left(x-\frac{h}{2} \dot{x}+\frac{1}{2}\left(\frac{h}{2}\right)^{2} \ddot{x}-\ldots\right)-\frac{1}{2} U\left(x+\frac{h}{2} \dot{x}+\frac{1}{2}\left(\frac{h}{2}\right)^{2} \ddot{x}+\ldots\right) \\
= & \frac{1}{2}|\dot{x}|^{2}-U+\frac{h^{2}}{24}\left(\left\langle\dot{x}, x^{(3)}\right\rangle-3 U^{\prime} \ddot{x}-3 U^{\prime \prime}(\dot{x}, \dot{x})\right)+\mathcal{O}\left(h^{4}\right)
\end{aligned}
$$

Example: Störmer-Verlet discretization

$$
\mathcal{L}_{\mathrm{disc}}[x]=\frac{1}{2}|\dot{x}|^{2}-U+\frac{h^{2}}{24}\left(\left\langle\dot{x}, x^{(3)}\right\rangle-3 U^{\prime} \ddot{x}-3 U^{\prime \prime}(\dot{x}, \dot{x})\right)+\mathcal{O}\left(h^{4}\right)
$$

From this we calculate the meshed modified Lagrangian,

$$
\begin{aligned}
\mathcal{L}_{\text {mesh }}[x]= & \mathcal{L}_{\text {disc }}[x]-\frac{h^{2}}{24} \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}} \mathcal{L}_{\text {disc }}[x]+\mathcal{O}\left(h^{4}\right) \\
= & \frac{1}{2}|\dot{x}|^{2}-U+\frac{h^{2}}{24}\left(\left\langle\dot{x}, x^{(3)}\right\rangle-3 U^{\prime} \ddot{x}-3 U^{\prime \prime}(\dot{x}, \dot{x})\right) \\
& \quad-\frac{h^{2}}{24}\left(\langle\ddot{x}, \ddot{x}\rangle+\left\langle\dot{x}, x^{(3)}\right\rangle-U^{\prime} \ddot{x}-U^{\prime \prime}(\dot{x}, \dot{x})\right)+\mathcal{O}\left(h^{4}\right) \\
= & \frac{1}{2}|\dot{x}|^{2}-U+\frac{h^{2}}{24}\left(-\langle\ddot{x}, \ddot{x}\rangle-2 U^{\prime} \ddot{x}-2 U^{\prime \prime}(\dot{x}, \dot{x})\right)+\mathcal{O}\left(h^{4}\right) .
\end{aligned}
$$

Eliminate second derivatives using $\ddot{x}=-U^{\prime}+\mathcal{O}\left(h^{2}\right)$,

$$
\mathcal{L}_{\text {mod }, 3}(x, \dot{x})=\frac{1}{2}|\dot{x}|^{2}-U+\frac{h^{2}}{24}\left(\left|U^{\prime}\right|^{2}-2 U^{\prime \prime}(\dot{x}, \dot{x})\right) .
$$

Example: Störmer-Verlet discretization

The modified Lagrangian is

$$
\mathcal{L}_{\mathrm{mod}, 3}(x, \dot{x})=\frac{1}{2}\langle\dot{x}, \dot{x}\rangle-U+\frac{h^{2}}{24}\left(\left|U^{\prime}\right|^{2}-2 U^{\prime \prime}(\dot{x}, \dot{x})\right) .
$$

Observe that this Lagrangian is not separable for general U.
The corresponding Euler-Lagrange equation is

$$
-\ddot{x}-U^{\prime}+\frac{h^{2}}{24}\left(2 U^{\prime \prime} U^{\prime}-2 U^{\prime \prime \prime}(\dot{x}, \dot{x})+4 U^{\prime \prime \prime}(\dot{x}, \dot{x})+4 U^{\prime \prime} \ddot{x}\right)=0
$$

Solving this for \ddot{x} we find the modified equation

$$
\ddot{x}=-U^{\prime}+\frac{h^{2}}{12}\left(U^{\prime \prime \prime}(\dot{x}, \dot{x})-U^{\prime \prime} U^{\prime}\right)+\mathcal{O}\left(h^{4}\right)
$$

The Kepler problem

Potential: $U(x)=-\frac{1}{|x|}$.
Lagrangian: $\mathcal{L}=\frac{1}{2}\langle\dot{x}, \dot{x}\rangle+\frac{1}{|x|}$.
Equation of motion $\ddot{x}=-\frac{x}{|x|^{3}}$.
Störmer-Verlet discretization:

$$
\frac{x_{j+1}-2 x_{j}+x_{j-1}}{h^{2}}=-U^{\prime}\left(x_{j}\right)
$$

The Kepler problem

Potential: $\quad U(x)=-\frac{1}{|x|}$.
Lagrangian: $\mathcal{L}=\frac{1}{2}\langle\dot{x}, \dot{x}\rangle+\frac{1}{|x|}$.
Equation of motion $\ddot{x}=-\frac{x}{|x|^{3}}$.
Störmer-Verlet discretization:

$$
\frac{x_{j+1}-2 x_{j}+x_{j-1}}{h^{2}}=-U^{\prime}\left(x_{j}\right)
$$

Midpoint discretization:

$$
\frac{x_{j+1}-2 x_{j}+x_{j-1}}{h^{2}}=-\frac{1}{2} U^{\prime}\left(\frac{x_{j-1}+x_{j}}{2}\right)-\frac{1}{2} U^{\prime}\left(\frac{x_{j}+x_{j+1}}{2}\right) .
$$

Störmer-Verlet discretization of the Kepler problem

The modified Lagrangian of the Störmer-Verlet discretization is

$$
\mathcal{L}_{\bmod , 3}(x, \dot{x})=\frac{1}{2}|\dot{x}|^{2}-U+\frac{h^{2}}{24}\left(U^{\prime} U^{\prime}-2 U^{\prime \prime}(\dot{x}, \dot{x})\right) .
$$

For the Kepler problem we have $U(x)=-\frac{1}{|x|}$, hence

$$
\mathcal{L}_{\mathrm{mod}, 3}(x, \dot{x})=\frac{1}{2}|\dot{x}|^{2}+\frac{1}{|x|}+\frac{h^{2}}{24}\left(\frac{1}{|x|^{4}}-2 \frac{\langle\dot{x}, \dot{x}\rangle}{|x|^{3}}+6 \frac{\langle x, \dot{x}\rangle^{2}}{|x|^{5}}\right) .
$$

Perturbation theory

The direction and shape of an elliptic orbit is determined by the Laplace-Runge-Lenz vector, which is the Noether integral for a generalized variational symmetry.

Introducing perturbations into Noether's theorem we find

Lemma

The precession rate (in radians per period) for the perturbed Lagrangian

$$
\mathcal{L}=\frac{1}{2}\langle\dot{x}, \dot{x}\rangle+\frac{1}{|x|}+\Delta U(x, \dot{x})
$$

is given in first order approximation by

$$
2 \pi a^{2} \frac{\partial\langle\Delta U(x, \dot{x})\rangle}{\partial b}
$$

where a and b are the semimajor and semiminor axes of the orbit respectively, and $\langle\cdot\rangle$ denotes the time-average along the unperturbed orbit.

Störmer-Verlet discretization of the Kepler problem

Proposition

The numerical precession rate of the Störmer-Verlet method is

$$
\frac{\pi}{24}\left(15 \frac{a^{3}}{b^{6}}-3 \frac{a}{b^{4}}\right) h^{2}+\mathcal{O}\left(h^{4}\right)
$$

Predicted: 0.0673 rad per revolution.

Measured: 0.0659 rad per revolution.

Midpoint discretization of the Kepler problem

Proposition

The numerical precession rate of the midpoint rule is

$$
-\frac{\pi}{12}\left(15 \frac{a^{3}}{b^{6}}-3 \frac{a}{b^{4}}\right) h^{2}+\mathcal{O}\left(h^{4}\right)
$$

Predicted:
-0.134 rad per revolution.

Measured:

- 0.152 rad per revolution.

New methods

Störmer-Verlet: $\frac{\pi}{24}\left(15 \frac{a^{3}}{b^{6}}-3 \frac{a}{b^{4}}\right) h^{2}+\mathcal{O}\left(h^{4}\right)$
Midpoint rule: $-\frac{\pi}{12}\left(15 \frac{a^{3}}{b^{6}}-3 \frac{a}{b^{4}}\right) h^{2}+\mathcal{O}\left(h^{4}\right)$
This allows us to construct new integrators with precession of order h^{4}.
(Related idea: Chartier, Hairer, Vilmart. Numerical integrators based on modified differential equations, 2007.)

Mixed Lagrangian (ML)

$$
L\left(x_{j}, x_{j+1}\right)=\frac{2}{3} L_{S V}\left(x_{j}, x_{j+1}\right)+\frac{1}{3} L_{M P}\left(x_{j}, x_{j+1}\right)
$$

Produces an implicit method, given by
$x_{j+1}-2 x_{j}+x_{j-1}=-\frac{2 h^{2}}{3} U^{\prime}\left(x_{j}\right)-\frac{h^{2}}{6} U^{\prime}\left(\frac{x_{j-1}+x_{j}}{2}\right)-\frac{h^{2}}{6} U^{\prime}\left(\frac{x_{j}+x_{j+1}}{2}\right)$

New methods

Lagrangian composition (LC)

Consider the discrete Lagrangians

$$
L_{j}\left(x_{k}, x_{k+1}\right)= \begin{cases}L_{M P}\left(x_{k}, x_{k+1}\right) & \text { if } 3 \mid j \\ L_{S V}\left(x_{k}, x_{k+1}\right) & \text { otherwise }\end{cases}
$$

Three different Euler-Lagrange equations which are applied for different values of $j \bmod 3$:

$$
\begin{cases}x_{j+1}-2 x_{j}+x_{j-1}=-\frac{h^{2}}{2} U^{\prime}\left(\frac{x_{j-1}+x_{j}}{2}\right)-\frac{h^{2}}{2} U^{\prime}\left(x_{j}\right) & \text { if } j \equiv 0 \bmod 3, \\ x_{j+1}-2 x_{j}+x_{j-1}=-h^{2} U^{\prime}\left(x_{j}\right) & \text { if } j \equiv 1 \bmod 3, \\ x_{j+1}-2 x_{j}+x_{j-1}=-\frac{h^{2}}{2} U^{\prime}\left(\frac{x_{j}+x_{j+1}}{2}\right)-\frac{h^{2}}{2} U^{\prime}\left(x_{j}\right) & \text { if } j \equiv 2 \bmod 3 .\end{cases}
$$

Equivalent to composing the corresponding symplectic maps.

New methods

Composition of difference equations (DEC)

$$
\begin{cases}x_{j+1}-2 x_{j}+x_{j-1}=-\frac{h^{2}}{2} U^{\prime}\left(\frac{x_{j-1}+x_{j}}{2}\right)-\frac{h^{2}}{2} U^{\prime}\left(\frac{x_{j}+x_{j+1}}{2}\right) & \text { if } j \equiv 2 \bmod 3, \\ x_{j+1}-2 x_{j}+x_{j-1}=-h^{2} U^{\prime}\left(x_{j}\right) & \text { otherwise. }\end{cases}
$$

Is this still a variational integrator?
For any of the new methods:

Precession rates

MP,SV: old methods
LC, ML, DEC: new methods
FR: Forest, Ruth. Fourth-order symplectic integration, 1989.
C: Chin. Symplectic integrators from composite operator factorizations, 1997.

Table Of Contents

(1) Variational and symplectic integrators [1]
(2) Modified Equations [1]
(3) A meshed modified' Lagrangian [2]

4 A true modified Lagrangian [2]
(3) Variational integration of the Kepler problem [3]
(6) A class of degenerate Lagrangians [4]
[1] Hairer, Lubich, Wanner. Geometric Numerical Integration. Springer, 2006.
[2] V. Modified equations for variational integrators. Numer. Math. 137:1001, 2017.
[3] V. Numerical precession in variational discretizations of the Kepler problem. arXiv:1602.01049.
[4] V. Modified equations for variational integrators applied to Lagrangians linear in velocities. arXiv:1709.09567.

Lagrangians linear in velocities

$\mathcal{L}: T \mathbb{R}^{N} \cong \mathbb{R}^{2 N} \rightarrow \mathbb{R}$ of the form

$$
\mathcal{L}(q, \dot{q})=\langle\alpha(q), \dot{q}\rangle-H(q),
$$

where $\alpha: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}, H: \mathbb{R}^{N} \rightarrow \mathbb{R}$, and the brackets \langle,$\rangle denote the$ standard scalar product.

Let

$$
A(q)=\alpha^{\prime}(q)=\left(\frac{\partial \alpha_{i}(q)}{\partial q_{j}}\right)_{i, j=1, \ldots, N} \quad \text { and } \quad A_{\text {skew }}(q)=A(q)^{T}-A(q)
$$

We assume that $A_{\text {skew }}(q)$ is invertible, then the Euler-Lagrange equation for \mathcal{L} is given by

$$
\dot{q}=A_{\text {skew }}(q)^{-1} H^{\prime}(q)^{T}
$$

Examples of Lagrangians linear in velocities

- Dynamics of point vortices in the (complex) plane

$$
\begin{gathered}
\mathcal{L}(z, \bar{z}, \dot{z}, \dot{\bar{z}})=\sum_{j=1}^{N} \Gamma_{j} \operatorname{Im}\left(\bar{z}_{j} \dot{z}_{j}\right)-\frac{1}{\pi} \sum_{j=1}^{N} \sum_{k=1}^{j-1} \Gamma_{j} \Gamma_{k} \log \left|z_{j}-z_{k}\right|, \\
\hookrightarrow \quad \dot{z}_{j}=\frac{i}{2 \pi} \sum_{k \neq j} \frac{\Gamma_{k}}{\bar{z}_{j}-\bar{z}_{k}} \quad \text { for } j=1, \ldots, N .
\end{gathered}
$$

- Variational formulation in phase space

$$
\begin{gathered}
\mathcal{L}(p, q, \dot{p}, \dot{q})=\langle p, \dot{q}\rangle-H(p, q) . \\
\hookrightarrow \quad \dot{q}=\left(\frac{\partial H}{\partial p}\right)^{T} \quad \text { and } \quad \dot{p}=-\left(\frac{\partial H}{\partial q}\right)^{T} .
\end{gathered}
$$

- Guiding centre motion (plasma physics)
- Many PDEs, e.g. nonlinear Schrödinger equation.
(But modified equations are not so useful for PDEs)

Possible discretization of $\mathcal{L}(q, \dot{q})=\langle\alpha(q), \dot{q}\rangle-H(q)$

$$
\begin{aligned}
& L_{\text {disc }}\left(q_{j}, q_{j+1}, h\right)=\left\langle\frac{1}{2} \alpha\left(q_{j}\right)+\frac{1}{2} \alpha\left(q_{j+1}\right), \frac{q_{j+1}-q_{j}}{h}\right\rangle-\frac{1}{2} H\left(q_{j}\right)-\frac{1}{2} H\left(q_{j+1}\right) \\
& \quad \hookrightarrow \quad\left(\frac{q_{j+1}-q_{j-1}}{2 h}\right)^{T} \alpha^{\prime}\left(q_{j}\right)-\frac{\alpha\left(q_{j+1}\right)^{T}-\alpha\left(q_{j-1}\right)^{T}}{2 h}-H^{\prime}\left(q_{j}\right)=0 .
\end{aligned}
$$

In case α is linear the Euler-Lagrange equation simplifies to

$$
\frac{q_{j+1}-q_{j-1}}{2 h}=A_{\text {skew }}^{-1} H^{\prime}\left(q_{j}\right)^{T} .
$$

The EL equation involves 3 points \Rightarrow needs 2 points of initial data.
The differential equation is of 1 st order \Rightarrow needs only 1 point of initial data.

This means we are dealing with a 2-step method and parasitic solutions can occur.

Parasitic solutions

Every multi-step method has an underlying 1-step method.
If the initial data lie on a solution of this 1-step method, both will agree.
If not, the solution of the multistep method oscillates around the solutions of the 1-step method. These oscillations can be bounded or exponentially growing, depending on the method.

In case the oscillations grow, parasitic oscillations take over after a certain time.

Even with perfect initial data, rounding errors will introduce oscillations.

Modified equations for 2-step methods

Principal modified equation

$$
\dot{q}=f(q)+h f_{1}(q)+h^{2} f_{2}(q)+\ldots+h^{k} f_{k}(q)
$$

satisfies

$$
\begin{aligned}
& \frac{a_{0} q(t)+a_{1} q(t+h)+a_{2} q(t+2 h)}{h} \\
& \quad=b_{0} f(q(t))+b_{1} f(q(t+h))+b_{2} f(q(t+2 h))+\mathcal{O}\left(h^{k+1}\right)
\end{aligned}
$$

Full system of modified equations

$$
\begin{aligned}
& \dot{x}=f_{0}(x, y)+h f_{1}(x, y)+\ldots+h^{k} f_{k}(x, y) \\
& \dot{y}=g_{0}(x, y)+h g_{1}(x, y)+\ldots+h^{k} g_{k}(x, y)
\end{aligned}
$$

such that the discrete curve $q_{j}=x(t+j h)+(-1)^{j} y(t+j h)$ satisfies

$$
\frac{a_{0} q_{j}+a_{1} q_{j+1}+a_{2} q_{j+2}}{h}=b_{0} f\left(q_{j}\right)+b_{1} f\left(q_{j+1}\right)+b_{2} f\left(q_{j+2}\right)+\mathcal{O}\left(h^{k+1}\right)
$$

A Lagrangian for the principal modified equation

Exactly the same as in the non-degenerate case:
(1) Taylor expansion to get $\mathcal{L}_{\text {disc }}$,
(2) Euler-Maclaurin formula to get $\mathcal{L}_{\text {mesh }}$,
(3) Replace higher derivatives to get $\mathcal{L}_{\text {mod }}$.

Even though we now have a first-order equation, we still cannot replace first derivatives in the Lagrangian.

Replacement of derivatives is allowed because of the natural interior conditions,

$$
\forall \ell \geq 2: \quad \frac{\partial \mathcal{L}}{\partial q^{(\ell)}}(t)=0
$$

Doubling the dimension

The discrete curve $\left(x_{j}, y_{j}\right)_{j \in \mathbb{Z}}$ is critical for
$\widehat{L}\left(x_{j}, y_{j}, x_{j+1}, y_{j+1}, h\right)=\frac{1}{2} L\left(x_{j}+y_{j}, x_{j+1}-y_{j+1}, h\right)+\frac{1}{2} L\left(x_{j}-y_{j}, x_{j+1}+y_{j+1}, h\right)$,
if and only if the discrete curves $\left(q_{j}^{+}\right)_{j \in \mathbb{Z}}$ and $\left(q_{j}^{-}\right)_{j \in \mathbb{Z}}$, defined by

$$
q_{j}^{ \pm}=x_{j} \pm(-1)^{j} y_{j}
$$

are critical for $L\left(q_{j}, q_{j+1}, h\right)$.

Lagrangian for the full system of modified equations
$=$ Lagrangian for the principal modified equation of the extended system.
Hence we can calculate a Lagrangian for the full system of modified equations with the tools we already have.

Example 1

For

$$
L_{\mathrm{disc}}\left(q_{j}, q_{j+1}, h\right)=\left\langle\frac{1}{2} A q_{j}+\frac{1}{2} A q_{j+1}, \frac{q_{j+1}-q_{j}}{h}\right\rangle-\frac{1}{2} H\left(q_{j}\right)-\frac{1}{2} H\left(q_{j+1}\right)
$$

we find

$$
\widehat{\mathcal{L}}_{\mathrm{mod}, 0}(x, y, \dot{x}, \dot{y}, h)=\langle A x, \dot{x}\rangle+\langle A \dot{y}, y\rangle-\frac{1}{2} H(x+y)-\frac{1}{2} H(x-y) .
$$

Its Euler-Lagrange equations are

$$
\begin{aligned}
& \dot{x}=A_{\text {skew }}^{-1}\left(\frac{1}{2} H^{\prime}(x+y)^{T}+\frac{1}{2} H^{\prime}(x-y)^{T}\right)+\mathcal{O}(h) \\
& \dot{y}=A_{\text {skew }}^{-1}\left(-\frac{1}{2} H^{\prime}(x+y)^{T}+\frac{1}{2} H^{\prime}(x-y)^{T}\right)+\mathcal{O}(h)
\end{aligned}
$$

Linearize the second equation around $y=0$

$$
\dot{y}=-A_{\text {skew }}^{-1} H^{\prime \prime}(x) y+\mathcal{O}\left(|y|^{2}+h\right)
$$

Example 1

Magnitude of oscillations satisfies

$$
\dot{y}=-A_{\text {skew }}^{-1} H^{\prime \prime}(x) y+\mathcal{O}\left(|y|^{2}+h\right)
$$

Unless the matrix $-A_{\text {skew }}^{-1} H^{\prime \prime}(x)$ is exceptionally friendly, we expect growing parasitic oscillations.
(Note that an eigenvalue analysis does not apply because $-A_{\text {skew }}^{-1} H^{\prime \prime}(x)$ is not constant)

Example 2

For

$$
L_{\mathrm{disc}}\left(q_{j}, q_{j+1}, h\right)=\left\langle A \frac{q_{j}+q_{j+1}}{2}, \frac{q_{j+1}-q_{j}}{h}\right\rangle-H\left(\frac{q_{j}+q_{j+1}}{2}\right)
$$

we find

$$
\widehat{\mathcal{L}}_{\mathrm{mod}, 0}(x, y, \dot{x}, \dot{y}, h)=\langle A x, \dot{x}\rangle+\langle A \dot{y}, y\rangle-H(x)
$$

Its Euler-Lagrange equations are

$$
\begin{aligned}
& \dot{x}=A_{\text {skew }}^{-1} H^{\prime}(x)^{T}+\mathcal{O}(h) \\
& \dot{y}=0+\mathcal{O}(h)
\end{aligned}
$$

Even better, $\dot{y}=0$ to any order \rightarrow no growing oscillations.

Summary

(1) Variational and symplectic integrators [1]
(2) Modified Equations [1]
(3) A meshed modified Lagrangian [2]
(4) A true modified Lagrangian [2]
(5) Variational integration of the Kepler problem [3]
(6) A class of degenerate Lagrangians [4]
[1] Hairer, Lubich, Wanner. Geometric Numerical Integration. Springer, 2006.
[2] V. Modified equations for variational integrators. Numer. Math. 137:1001, 2017.
[3] V. Numerical precession in variational discretizations of the Kepler problem. arXiv:1602.01049.
[4] V. Modified equations for variational integrators applied to Lagrangians linear in velocities. arXiv:1709.09567.

Summary

- Obtaining a high-order modified Lagrangian $\mathcal{L}_{\text {mesh }}[x]$ is relatively straighforward, but its interpretation is not.
- From $\mathcal{L}_{\text {mesh }}[x]$ a first order Lagrangian $\mathcal{L}_{\text {mod }, k}(x, \dot{x})$ can be found using the meshed variational principle.
- If the Lagrangian is nondegenerate, the modified Lagrangian can also be obtained by Legendre transform from the modified Hamiltonian.
- Our approach extends to degenerate Lagrangians that are linear in velocities.
- Can we get improved error estimates from the Lagrangian perspective?
- What about nonholonomic constraints?
- What about PDEs?

¡Gracias por su atención!

(1) Variational and symplectic integrators [1]
(2) Modified Equations [1]
(3) A meshed modified Lagrangian [2]
(4) A true modified Lagrangian [2]
(5) Variational integration of the Kepler problem [3]
(6) A class of degenerate Lagrangians [4]
[1] Hairer, Lubich, Wanner. Geometric Numerical Integration. Springer, 2006.
[2] V. Modified equations for variational integrators. Numer. Math. 137:1001, 2017.
[3] V. Numerical precession in variational discretizations of the Kepler problem. arXiv:1602.01049.
[4] V. Modified equations for variational integrators applied to Lagrangians linear in velocities. arXiv:1709.09567.

