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Continuous Lagrangian Mechanics

Lagrange function: L:R*N =~ TQ - R: (q,4) — L(q,q).

Solutions are curves g(t) that minimize (or are critical points of) the action

s— [ " La(e), a(e)) e

where the integration interval [tp, t1] and the boundary values g(ty) and

q(t1) are fixed.

oL oL
0=46S= —0 —dqdt
. 90797 35
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Euler-Lagrange Equation: g — c(iitgq =0
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Continuous Lagrangian Mechanics

Lagrange function: L:R?N = TQ - R : (q,q) — L(q,q).

Solutions are curves g(t) that minimize (or are critical points of) the action

S= / t),q(t))d
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Legendre transformation
Relates Hamiltonian and Lagrangian formalism:

pg = H(q,p) + L(q, q).
Differentiating w.r.t. g, p and q,

oL
T
. OH
o

0—8_H+ﬁ — a_H+' + %_ig
“9g "ag \aqg P dg dtdg)’

establishes equivalence between Lagrangian and Hamiltonian equations of
motion.
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Legendre transformation
Relates Hamiltonian and Lagrangian formalism:

pq = H(a,p) + L(q,4q).
Differentiating w.r.t. g, p and q,

oL
T
. OH
T op

“9q "ag \aqg P dq  dtog)’

establishes equivalence between Lagrangian and Hamiltonian equations of
motion.

2
az| 7 °

Hamiltonian systems preserve the symplectic 2-form w =), dp; A dg;.
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Symplectic structure
Let ®; be the flow of a Hamiltonian system, i.e.

®o(q,p) = (q,p)

and

S0 = (Grocda. ). Sh @ ap))

Then for each t, ®; is a symplectic map,
Piw = w,
where w is the canonical symplectic form
w = Z dgi A dp;.
i
Definition

A symplectic integrator is a discretization (in time) of a Hamiltonian
systems, such that each discrete time-step is given by a symplectic map.
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Discrete Lagrangian mechanics
Lagrange function: L: RN x RN = R : (x,%) — L(x, X).

Solutions are discrete curves x = (xp, x1, . - ., Xn) that are critical points of
the action

n
Sdisc = Z hLdiSC(Xjfla Xj)
j=1
Euler-Lagrange equation:
Do Laise(%j-1,%j) + D1Laisc(xj, Xj41) = 0,
where D1, D5 denote the partial derivatives of Lgjgc.
Definition

A variational integrator for a continuous system with Lagrangian L is a
discrete Lagrangian system with

Ldisc(X(t - h),X(t’)) = £(X(t),X(t)),

and hence Sgisc =~ S.
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Equivalence
Theorem
If the Lagrangian/Hamiltonian is regular, variational and symplectic

integrators are equivalent.

Proof. the discrete Lagrangian is a generation function of the symplectic
map describing one time step,

pj = —hD1 Laisc(Xj, Xj+1)

pj+1 = hD2Lgisc(Xj, Xj+1) u

Mats Vermeeren (TU Berlin) Modified equations for variational integrators
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Example: Stormer-Verlet method

Consider a mechanical system X = —U’(x) with Lagrangian

L(x,%) = % (x,%) — U(x)

The Stormer-Verlet discretization is given by the discrete Lagrangian

1 /Xj41— X% Xj+1— X 1 1
- _ J+1 y A+l J] ] ]
Ldisc(Xjaxj—l—l) = 5 h s h —EU(XJ)—§U(XJ+1)
Xiy1 — 2X; + Xj_
. . . G+1 i j—1 /
Its discrete Euler-Lagrange equation is e = —U'(x)
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Example: Stormer-Verlet method

Consider a mechanical system X = —U’(x) with Lagrangian

L(x, %) = % (x,%) — U(x)

The Stormer-Verlet discretization is given by the discrete Lagrangian

1 /X211 —X Xji1— X 1 1
Ldisc(Xjan—i—l):< O J>—2U(Xj)—2U(Xj+1)

2 h h
. L Xip1 — 2Xx + xi—
Its discrete Euler-Lagrange equation is —- hZJ =L — U ()
Abstract notation: (xj_1,X;j, Xj+1; h) = 0 with
Xiy1 — 2X; + Xj—
. J+1 J j—1
D(Xj-1, %), X413 h) = = +U'(x)
Symplectic equivalent: 12
Xj41 = Xj + hpj — ?U/(Xj)
h / h /
Pj+1 = pj — EU (x) — §U (%j+1)
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Modified Equations

Exact solution of a differential equation:

Notice conservation of Energy:
» Easy to prove for (continuous) Hamiltonian systems

» Follows by Noether’'s theorem from invariance under time-translation
of the Lagrangian

» Symplectic/variational integrators very nearly preserve energy. Why?
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Modified Equations

Conservation of Energy:
» Easy to prove for (continuous) Hamiltonian systems

» Follows by Noether's theorem from invariance under time-translation
of the Lagrangian
Symplectic/variational integrators very nearly preserve energy. Why?

Idea of proof: find a modified equation, a differential equation with

solutions that interpolate the numerical solutions:

DA AN A SRR AR
EU\J\JZ\/\J\J\J\]UU&UVVVU“
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Modified Equations

Modified equations are usually given by power series.
Often they do not converge.

Definition
The differential equation X = f(x, x; h), where

f(x,%; h) ~ fo(x, %) + hfi(x, %) + W fa(x, %) + ...

is @ modified equation for the second order difference equation
V(xj_1,Xj, Xj+1; h) = 0 if, for every k, every solution of the truncated
differential equation

X = ﬁ(fh(X,X))
= fo(x, X) + hfi(x, x) + K fa(x, x) + ... + h¥fi(x, X).

satisfies
W(x(t — h),x(t),x(t + h); h) = O (K<),

Mats Vermeeren (TU Berlin) Modified equations for variational integrators: August 2018 13 / 53



Modified Equations for symplectic integrators
Symplectic integrators are known the very nearly preserve energy, because
Theorem

The modified equation for a symplectic integrator is a Hamiltonian
equation.

Can we arrive at a similar result purely on the Lagrangian side?

Are modified equations for variational integrators Lagrangian?
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General idea

Look for a modified Lagrangian L,0q(x, x) such that the discrete
Lagrangian Lgisc is its exact discrete Lagrangian, i.e.

jh

/U | Eaax(6) )08 = Bl (G — D) ).
j—1

The Euler-Lagrange equation of L,,q will then be the modified equation.

The best we can hope for is to find such a modified Lagrangian up to an
error of arbitrarily high order in h.
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The discrete Lagrangian evaluated on a continuous curve

We can write the discrete Lagrangian as a function of x and its
derivatives, all evaluated at the point jh — g

h. 1 (h\?.
Edisc[x] = Ldisc (X - §X+ 5 <2> X — ...,
e (Ve
xtoxt+o () X+ )

= Ldisc(xj—bxj; h)

Here and in the following:

» [x] denotes dependence on x and any number of its derivatives,

> we evaluate at t = jh — g whenever we omit the variable ¢, i.e.
4 h
X =X (_jh — 5),

» xj = x(jh) and xj_1 = x((j — 1)h).

Mats Vermeeren (TU Berlin) Modified equations for variational integrators: August 2018
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A truly continuous Lagrangian
We want to write the discrete action

Sdisc - Z hLdisc(Xj—L XJ Z hﬁdlSC h — —)]

j=1

as an integral.

Lemma (Euler-MacLaurin formula)

For any smooth function f : R — RN we have

jz:;hf(jh—g> _/ th (222 —1 )(Bz’ F@(t)de

2i)!

nh 2
:/O (f(t) - g—4f(t)+ 57601“‘”( )+---) dt,

where B; are the Bernoulli numbers.

The symbol ~ indicates that this is an asymptotic series.

Mats Vermeeren (TU Berlin) Modified equations for variational integrators: August 2018 18 / 53



A truly continuous Lagrangian

Definition
We call ) :
o o h2182i d2l
Emesh[x(t)] = Edisc[x(t)] + Z (2 = 1) W@ﬁdisc[x(t)]
i=1 ’
h? d? 7h* d*
- ﬁdisc[x(t)] 24 de2 ‘CdISC[ ( )] %@Ldisc[x(t)] +..

the meshed modified Lagrangian of Lgjsc.

Formally, the meshed modified Lagrangian satisfies
[ L] de = 37 hlacl.5:1)

where x; = x(jh).
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A truly continuous Lagrangian

Definition
We call ] )
0 o h2182i d2l
['mesh[x(t)] = Edisc[x(t)] + Z (2 = 1) WFﬁdiSC[X(t)]
i=1 ’
h? d2 7h* d*
= ﬁdisc[x(t) 24 A2 ‘CdISC[ ( )] %@Ldisc[x(t)] +..

the meshed modified Lagrangian of Lgjsc.

Formally, the meshed modified Lagrangian satisfies

/ﬁmesh[x(t)] dt = Z hLdisc(><j7)<f+1)
where x; = x(jh).

Are we finished?
Linesh|[x] depends on many more derivatives than the original £(x, x).
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The meshed variational problem

Definition

c/assica/ variational problem: find critical curves of some action

f L[x(t)] dt in the set of smooth curves C*°.

meshed variational problem: find critical curves of some action

f L[x(t)] dt in the set of piecewise smooth curves that are consistent
with a mesh of size h,

CMh = {x e CO%[a, b]) | 3to € [a,b] : Vt € [a, b] :
X not smooth at t = t — ty € hN}.

Classical variational problem Meshed variational problem

Mats Vermeeren (TU Berlin) Modified equations for variational integrators: August 2018 20 / 53



The meshed variational problem

Criticality conditions of a meshed variational problem:

0
Euler-Lagrange equations: S 0,
X

oL

Natural interior conditions: Vj > 2: X0

=0,

. . oL
or equivalently: Vj > 2: XD 0,

where
> oL
(5x(J Z_: tk OxU+k)”

If £ is a non-convergent power series, these equations are formal.
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The meshed variational problem

We have that Sgisc(x(0), x(h), . /ﬁmesh[x]dt

: C L 0L
Hence the discrete action is critical if and only if Somesh g,

Variations that are supported on a single mesh interval do not change the
discrete action, so the cannot change [ Lyesh[x]dt.

Since these are the variations that produce natural interior conditions, it
follows that they are automatically satisfied:

5£mesh . oc
=0 = Vj>2:—-" =0
0x OxU)
Mats Vermeeren (TU Berlin) Modified equations for variational integrators:
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The meshed variational problem

We have that Sgisc(x(0), x(h), . /ﬁmesh[x]dt

: C L 0L
Hence the discrete action is critical if and only if Somesh g,

Variations that are supported on a single mesh interval do not change the
discrete action, so the cannot change [ Lyesh[x]dt.

Since these are the variations that produce natural interior conditions, it
follows that they are automatically satisfied:

5£mesh . oL
= > L =
Sx 0 = Vj>2 0 0

IThe modified equation can be calculated as

8Emesh _ iaﬁmesh o
Ox dt ox

even though the Lagrangian L,,cs;, depends on higher derivatives.
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Definition

The modified Lagrangian is the formal power series
L X)=L ;
el HWQJX]i=ﬁ(XX)7XBEﬁ%ﬁKXJL-~

where X = fy(x, x) is the modified equation.

The k-th truncation of the modified Lagrangian is
ﬁmod,k - 77( (‘Cmod(ny)) - 77( (ﬁmeSh[X]‘XU)—Fi2(X,X)) 5

where Tx denotes truncation after the h*-term and

X = F2(x, %, h) + O(h*1) = Fi(x, x; h) + O(h*1),

x®) = F3(x, % h) + O(hF1), x®) = F(x, % h) + O(h**), ...

are the k-th truncation of the modified equation and its derivatives.
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Lemma

The meshed modified Lagrangian L,csn[x] and the modified Lagrangian
Limod(x, %) have the same critical curves.

Proof.
a‘cmod,k _ OLmesh + OLmesh aF[E OLmesh OF
ox  Ox ox  Ox oxB)  dx ’ W=F]_(x%)
&C h k
_ mes pkH+1
b oAk,
Also,
8£mod,k o 8‘Cmesh + a£mesh 8,:/3 8£mesh 8":[?
ox  0x ox  0x  oxB®) ox WO=F] L (x%)
a£ h k
mes pkt+1
ox +0( )
a»Cmod,k d a‘Cmod,k o - d 0L mesh k+1
= o a2 Wi g Touth. .

j=
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Main result

Theorem

For a discrete Lagrangian Lgis. that is a consistent discretization of some
L, the k-th truncation of the Euler-Lagrange equation of L4 k(X, X) is
the k-th truncation of the modified equation.

Proof. Let x be a solution of the Euler-Lagrange equation for L£,04(x, X).
Consider the discrete curve x; = x(jh).

» x is critical for the action [ Lpoea(x, x) dt.

» By the Lemma, x is critical for the action [ Lpyesn[x] dt.

> By construction, the actions Sqisc = ) ; Laisc(y(jh), y(( + 1)h)) and
S= fab Lumodly(t)] dt are equal for any smooth curve y.

> Therefore the discrete curve (x(jh)); is critical for the discrete action
Sdisc- Hence

Dy Lgise(x(t — h), x(t)) + D1 Laisc(x(t), x(t + h)) =0. W
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Example: Stormer-Verlet discretization

£(x,%) = 352~ U,

1

2
Xiy1 — X; 1
oA _EU(XJ)_EU(XJ—H)'

LdiSC(vaxj—l-l) = h

N —

Its Euler-Lagrange equation is

Xj+1 = 2% + Xj—-1
h2

= —U'(x).
We have
Lol = (54 Bx® 4 it Bx® 1)

R ) 30 (xor B 3 () )

—JU(x -5+ 1 (D)%~
1 .12 h2 . (3) /] - 1"y . 4
= Sl —U—i—ﬂ((x,x Y —3U'% - 3U (x,x)) +O(h*)
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Example: Stormer-Verlet discretization

2

Laisc[x] = %|5<|2 v (< x®) —3U'% — 3U”(>’<,>‘<)) + O(h"),

24

From this we calculate the meshed modified Lagrangian,

h2 d2
Linesh[X] = Laise[x] — 24 dr2 ~—— Ldise[x] + O(h4)
_ 1 .12 h2 (3) ] e 1 [ - .
—§\x| U+ﬂ(< ) —3U'x—3U (X,X))
h2 . 3 ] - 1 - . 4
- <<X )+ (3, — Uk~ U (x,x)) + O
2
= 7\542 U+h—( (%,%) —2U'% = 2U" (%, %)) + O(h").

Eliminate second derivatives using X = —U’ + O(h?),
) = 1 ‘|2 112 "ee
£m0d,3(XaX) - 2’X‘ U+ (’U ’ 2U (X,X)) .

Mats Vermeeren (TU Berlin) Modified equations for variational integrators: August 2018
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Example: Stormer-Verlet discretization

The modified Lagrangian is

: 1,. . h? -
»Cmod,3(X7X) = 5 <X7X> -U+ ﬁ (|U/|2 - 2U”(X7X)) .

Observe that this Lagrangian is not separable for general U.
The corresponding Euler-Lagrange equation is

2

—x—-U + ” (U'U = 2U" (x,x) + 4U" (x,x) + 4U"X) = 0.

24

Solving this for X we find the modified equation

h2
x=-U+ - (U"(x,%) — U"U) + O(h*).

Mats Vermeeren (TU Berlin) Modified equations for variational integrators: August 2018
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The Kepler problem

Potential: U(x) = L

1
Lagrangian: £ = = (x,x) + R
X

2
. . . X
Equation of motion X = -5
x|
Stormer-Verlet discretization:
Xiy1 — 2X; + X;_
y+1 Y y—1 _ /
= —U'(x)-

h2
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The Kepler problem

Potential: U(x) = mri

1
Lagrangian: £ = = (x,x) + R
X

2
. . . X
Equation of motion X = -5
x|
Stormer-Verlet discretization:
Xiy1 — 2X; + X;_
y+1 Y y—1 _ /
= —U'(x)-

h2

Midpoint discretization:

X1 = 2 + X1 _1U,<Xj—1+><j) _1U,<
T2 2

h2
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Stormer-Verlet discretization of the Kepler problem

The modified Lagrangian of the Stormer-Verlet discretization is

: 1. h? o
Lmod3(x, %) = S|%* = U+ o0 (U'U' = 2U" (%, %)) .
1
For the Kepler problem we have U(x) = L hence
X

2 . 2
cmod,3(x,x-):%\x-|z+i+h_<i_2<x,x>+6<x,x> )

x| 24 \ Xt X [x[°

Mats Vermeeren (TU Berlin) Modified equations for variational integrators August 2018
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Perturbation theory

The direction and shape of an elliptic orbit is determined by the

Laplace-Runge-Lenz vector, which is the Noether integral for a generalized
variational symmetry.

Introducing perturbations into Noether's theorem we find

Lemma

The precession rate (in radians per period) for the perturbed Lagrangian

1

£=>{

X, X) +
x|

+ AU(x, %),
is given in first order approximation by

A .
,/T328< %(bx7x)> ’

where a and b are the semimajor and semiminor axes of the orbit
respectively, and (-) denotes the time-average along the unperturbed orbit.

Mats Vermeeren (TU Berlin)
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Stormer-Verlet discretization of the Kepler problem

Proposition
The numerical precession rate of the Stormer-Verlet method is

e 23 a
T (152 —32 ) 2+ O(h*
24(5 3 ) +O(h*

bo b4

Predicted:
0.0673 rad per
revolution.

Measured:
0.0659 rad per
revolution.
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Midpoint discretization of the Kepler problem

Proposition
The numerical precession rate of the midpoint rule is
ST (152 —32 ) re s O(h*)
12 bo b*

S ﬁ' NS
7 N
SN
\\S\
A

.

27

i
',z

Modified equations for variational integrators

Mats Vermeeren (TU Berlin)

Predicted:
—0.134 rad per
revolution.

Measured:
—0.152 rad per
revolution.
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New methods

. T a3 ’ 4
Stormer-Verlet: — b6 3b4 h* 4+ O(h")
4 33 2 4
Midpoint rule: —— b6 3b4 h*+O(h")

This allows us to construct new integrators with precession of order h*.

(Related idea: Chartier, Hairer, Vilmart. Numerical integrators based on modified
differential equations, 2007.)

Mixed Lagrangian (ML)

1
§st(Xj7Xj+1) - §LMP(><J">9'+1)

Produces an implicit method, given by

2h? h? . . h2 4
Xj+1 — 2XJ + Xj— 1———U/(XJ) FUI <X11—+XJ) —_ U (Xj+)<1+1>

L(xj, xj+1) =

3 2 6 2
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New methods
Lagrangian composition (LC)
Consider the discrete Lagrangians

L0 xtn) = Lmp(xk, xk+1) — if 3]),
R e Lsv (XK, Xk+1) otherwise.

Three different Euler-Lagrange equations which are applied for different
values of j mod 3:

Xib1 = g+ x-1 = —E U (252E) - BU(x) if j = 0 mod 3,
Xji+1 — 2% + xj_1 = —h*U'(x;) if j =1 mod 3,
xj+1—2xj+xj_1:—%2U’ (%)—%U/(XJ) if j =2 mod 3.

Equivalent to composing the corresponding symplectic maps.
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New methods

Composition of difference equations (DEC)

Xjp = g+ x50 = — U (B5P) - By () ifj=2mod 3,

Xit1 — 2X; + xj—1 = —h?U'(x)) otherwise.

Is this still a variational integrator?

For any of the new methods:

2|
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Precession rates

01¢ --MP
- SV
0.001L —--FR
% —4+—LC
5 ML
10-5k --DEC
x -=C
-4=h? reference
107 e
=4=-h" reference
10797 L L L L L
0.10 0.15 0.20 0.30 0.50
Step size
MP,SV: old methods LC, ML, DEC: new methods

FR: Forest, Ruth. Fourth-order symplectic integration, 1989.

C: Chin. Symplectic integrators from composite operator factorizations, 1997.
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Lagrangians linear in velocities

L TRN 2 R2N 5 R of the form

L(q,q) = (a(q), @) — H(q),
where o : RN — RNV, H: RN — R, and the brackets (,) denote the
standard scalar product.

Let

Ao = @) = (F50) and Avta) = A0 - AG@

EERAE)

We assume that Agew(q) is invertible, then the Euler-Lagrange equation
for L is given by

q= Askew(q)ilHl(q)T
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Examples of Lagrangians linear in velocities

» Dynamics of point vortices in the (complex) plane

N j-1
L(z2,2,2,Z) = Zrlmzjzj) erjrklog‘zj
_jlk:].
. i Ik .
— zJ':—Zf' — forj=1,...,N.
27rk7éjzj—zk

» Variational formulation in phase space

L(p.q,p,q) = (p.q) — H(p,q).

. OH\ T _ OH\ "
< a=(3,) e p=—{5)

» Guiding centre motion (plasma physics)
» Many PDEs, e.g. nonlinear Schrodinger equation.

(But modified equations are not so useful for PDEs)
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Possible discretization of £(q,q) = (a(q),q) — H(q)

1 1 gj+1 — qj 1 1
Laisc(G7, g1, ) = { Sa(q)) + ~a(gi41) , 2 Y~ > H(q;)— = H(qj+1)
2 2 h 2 2

T T T
Q41— Gj— a(gjr1)" — algj-
o < J+12h Ji 1) o/(q)) - (gj+1) - (gi-1)" Hi(q;) = 0.

In case « is linear the Euler-Lagrange equation simplifies to

gji+1 — gj-1 _
? 2h ? = Ask}ele(qj)T‘

The EL equation involves 3 points = needs 2 points of initial data.

The differential equation is of 1st order = needs only 1 point of initial
data.

This means we are dealing with a 2-step method and parasitic solutions

can occur.
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Parasitic solutions

Every multi-step method has an underlying 1-step method.
If the initial data lie on a solution of this 1-step method, both will agree.

If not, the solution of the multistep method oscillates around the solutions
of the 1-step method. These oscillations can be bounded or exponentially
growing, depending on the method.

In case the oscillations grow, parasitic oscillations take over after a certain
time.

Even with perfect initial data, rounding errors will introduce oscillations.
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Modified equations for 2-step methods
Principal modified equation

g = f(q) + hfi(q) + h°H(q) + ... + h*fi(q)
satisfies
aoq(t) + a1q(t + h) + axq(t + 2h)
h
= bof(q(t)) + brf(q(t + h)) + baf (q(t + 2h)) + O(K*T).

Full system of modified equations
x = fo(x,y) + hfi(x,y) + ... + h*F(x, y)
v = 8o(x,y) + hgi(x,y) + ... + hax(x,y),
such that the discrete curve g; = x(t + jh) + (—1Yy(t + jh) satisfies

S alqj;1 e bof(qj) + b1f(gjr1) + b2f(gjs2) + O(A<)
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A Lagrangian for the principal modified equation

Exactly the same as in the non-degenerate case:
@ Taylor expansion to get Lgisc,
@ Euler-Maclaurin formula to get Liesh,
© Replace higher derivatives to get L,04-

Even though we now have a first-order equation, we still cannot replace
first derivatives in the Lagrangian.

Replacement of derivatives is allowed because of the natural interior

conditions, or
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Doubling the dimension

The discrete curve (x;, yj)jez is critical for

-~ 1 1

L0, ¥js X1, Vi1, B) = S LOGHY) Xjr1=Yje1, h)+5 LG =y5 X+1+ Y541, h),
if and only if the discrete curves (qJ?L)J-GZ and (g; )jez, defined by

" =x £ (-1)y;,

are critical for L(qj, gj+1, h).

Lagrangian for the full system of modified equations
= Lagrangian for the principal modified equation of the extended system.

Hence we can calculate a Lagrangian for the full system of modified
equations with the tools we already have.
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Example 1

For

h

1 1 gji+1— qj 1 1
Ldisc(qjv qj+1, h) = <2qu + §qu+1 , HJ> - EH(QJ) - §H(qj+1)

we find

~

Emod,O(Xaya)‘Qy, h) = <AX7X> + <Ayay> -

2
Its Euler-Lagrange equations are

: _ 1 1

= Al (G NT =T ) + O

. _ 1 1

= Ak (S3H )T + )T ) + O
Linearize the second equation around y =0

y=—AL H'(x)y + O(ly|* + h)
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Example 1

Magnitude of oscillations satisfies

y=—A H'(x)y +O(y]> + h)

skew

Unless the matrix —A_L H"(x) is exceptionally friendly, we expect

growing parasitic oscillations.

(Note that an eigenvalue analysis does not apply because —AS_ktWH”(X) is

not constant)
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Example 2

For

Ldisc(qj, gj+1, h) = <AqJ + qj+1 : qj+1 — qJ> B H(%)

2 h

we find

~

['mod,O(Xayaxv.).@ h) = <AX7X> + <Ay,y> - H(X)

Its Euler-Lagrange equations are

x=A2 H ()T +0O(h),

skew

y =0+ O(h).

Even better, y = 0 to any order — no growing oscillations.
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Summary

@ Variational and symplectic integrators [1]

© Modified Equations [1]

© A meshed modified Lagrangian [2]

@ A true modified Lagrangian [2]

@ Variational integration of the Kepler problem [3]

@ A class of degenerate Lagrangians [4]
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Summary

» Obtaining a high-order modified Lagrangian L,esh[x] is relatively
straighforward, but its interpretation is not.

» From Lyesn[x] a first order Lagrangian L4 (X, X) can be found
using the meshed variational principle.

> If the Lagrangian is nondegenerate, the modified Lagrangian can also
be obtained by Legendre transform from the modified Hamiltonian.

» Our approach extends to degenerate Lagrangians that are linear in
velocities.

» Can we get improved error estimates from the Lagrangian
perspective?

» What about nonholonomic constraints?

» What about PDEs?
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