Hamiltonian and Lagrangian perspectives on integrable hierarchies

Mats Vermeeren

TU Berlin

Integrable Systems Seminar, Leeds
November 8, 2019

Discretization in
Geometry and Dynamics SFB Transregio 109

Contents

(1) Introduction
(2) Pluri-Lagrangian 1-form systems (ODEs)
(3) Pluri-Lagrangian 2-form systems (PDEs)
(4) Hamiltonian structure of Lagrangian 1-form systems
(5) Hamiltonian structure of Lagrangian 2-form systems

Table of Contents

(1) Introduction

(2) Pluri-Lagrangian 1-form systems (ODEs)
(3) Pluri-Lagrangian 2-form systems (PDEs)

4 Hamiltonian structure of Lagrangian 1-form systems
(5) Hamiltonian structure of Lagrangian 2-form systems

Hamiltonian Systems

Hamilton function $H: T^{*} Q \rightarrow \mathbb{R}:(q, p) \mapsto H(q, p)$ determines dynamics:

$$
\dot{q}_{i}=\frac{\partial H}{\partial p_{i}} \quad \text { and } \quad \dot{p}_{i}=-\frac{\partial H}{\partial q_{i}}
$$

Poisson bracket of two functionals on $T^{*} Q$:

$$
\{f, g\}=\sum_{i=1}^{N}\left(\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}}\right)
$$

Dynamics of a Hamiltonian system:

$$
\dot{q}_{i}=\left\{q_{i}, H\right\}, \quad \dot{p}_{i}=\left\{p_{i}, H\right\}, \quad \frac{\mathrm{d}}{\mathrm{~d} t} f(q, p)=\{f(q, p), H\}
$$

Properties:
anti-symmetry: $\{f, g\}=-\{g, f\}$
bilinearity: $\{f, g+\lambda h\}=\{f, g\}+\lambda\{f, h\}$
Leibniz property: $\{f, g h\}=\{f, g\} h+g\{f, h\}$
Jacobi identity: $\{f,\{g, h\}\}+\{g,\{h, f\}\}+\{h,\{f, g\}\}=0$

Liouville-Arnold integrability

A Hamiltonian system with Hamilton function $H: \mathbb{R}^{2 N} \rightarrow \mathbb{R}$ is Liouville-Arnold integrable if there exist N functionally independent Hamilton functions $H=H_{1}, H_{2}, \ldots H_{N}$ such that $\left\{H_{i}, H_{j}\right\}=0$.

- Each H_{i} is a conserved quantity for all flows.
- The dynamics is confined to a leaf of the foliation $\left\{H_{i}=\right.$ const $\}$.
- The flows commute.
- There exists a symplectic change of variables $(p, q) \mapsto(\bar{p}, \bar{q})$ such that

$$
H(p, q)=\bar{H}_{i}(\bar{p})
$$

Liouville-Arnold integrable systems evolve linearly in these variables! (\bar{p}, \bar{q}) are called action-angle variables.

Variational analogue of $\left\{H_{i}, H_{j}\right\}=0$

Integrable systems come in families: finite (for ODEs) or infinite (for PDEs) hierarchies of commuting equations:

$$
\frac{\mathrm{d}}{\mathrm{~d} t_{i}} \frac{\mathrm{~d}}{\mathrm{~d} t_{j}}=\frac{\mathrm{d}}{\mathrm{~d} t_{j}} \frac{\mathrm{~d}}{\mathrm{~d} t_{i}} \quad \text { for time variables } t_{1}, t_{2}, \ldots
$$

On the Hamiltonian side, integrability is characterized by $\left\{H_{i}, H_{j}\right\}=0$. What about the Lagrangian side?

Variational analogue of $\left\{H_{i}, H_{j}\right\}=0$

Integrable systems come in families: finite (for ODEs) or infinite (for PDEs) hierarchies of commuting equations:

$$
\frac{\mathrm{d}}{\mathrm{~d} t_{i}} \frac{\mathrm{~d}}{\mathrm{~d} t_{j}}=\frac{\mathrm{d}}{\mathrm{~d} t_{j}} \frac{\mathrm{~d}}{\mathrm{~d} t_{i}} \quad \text { for time variables } t_{1}, t_{2}, \ldots
$$

On the Hamiltonian side, integrability is characterized by $\left\{H_{i}, H_{j}\right\}=0$.
What about the Lagrangian side?
Pluri-Lagrangian (Lagrangian multi-form) principle for ODEs
Combine the Lagrange functions $L_{i}[u]$ into a Lagrangian 1-form

$$
\mathcal{L}[u]=\sum_{i} L_{i}[u] \mathrm{d} t_{i} .
$$

Look for dynamical variables $u\left(t_{1}, \ldots, t_{N}\right)$ such that the action

$$
S_{\Gamma}=\int_{\Gamma} \mathcal{L}[u]
$$

is critical w.r.t. variations of u, simultaneously over every curve Γ in multi-time \mathbb{R}^{N}

Table of Contents

(1) Introduction

(2) Pluri-Lagrangian 1-form systems (ODEs)
(3) Pluri-Lagrangian 2-form systems (PDEs)
(4) Hamiltonian structure of Lagrangian 1-form systems
(5) Hamiltonian structure of Lagrangian 2-form systems

Multi-time Euler-Lagrange equations

Consider a Lagrangian one-form $\mathcal{L}=\sum_{i} L_{i}[u] d t_{i}$

Lemma

If the action $\int_{S} \mathcal{L}$ is critical on all stepped curves S in \mathbb{R}^{N}, then it is critical on all smooth curves.

Variations are local, so it is sufficient to look at a general L-shaped curve $S=S_{i} \cup S_{j}$.

Multi-time Euler-Lagrange equations

$$
\begin{aligned}
\delta \int_{S_{i}} L_{i} \mathrm{~d} t_{i} & =\int_{S_{i}} \sum_{l} \frac{\partial L_{i}}{\partial u_{l}} \delta u_{I} \mathrm{~d} t_{i} \\
& =\int_{S_{i}} \sum_{\mid \not \not t_{i}} \sum_{\alpha=0}^{\infty} \frac{\partial L_{i}}{\partial u_{l t_{i}^{\alpha}}} \delta u_{l_{i}^{\alpha}} \mathrm{d} t_{i} \\
& =\int_{S_{i}} \sum_{\mid \not \not t_{i}} \frac{\delta_{i} L_{i}}{\delta u_{l}} \delta u_{I} \mathrm{~d} t_{i}+\left.\sum_{l} \frac{\delta_{i} L_{i}}{\delta u_{t_{i}}} \delta u_{l}\right|_{p},
\end{aligned}
$$

where I denotes a multi-index, and

$$
\frac{\delta_{i} L_{i}}{\delta u_{I}}=\sum_{\alpha=0}^{\infty}(-1)^{\alpha} \frac{\mathrm{d}^{\alpha}}{\mathrm{d} t_{i}^{\alpha}} \frac{\partial L_{i}}{\partial u_{I t_{i}^{\alpha}}^{\alpha}}=\frac{\partial L_{i}}{\partial u_{I}}-\frac{\mathrm{d}}{\mathrm{~d} t_{i}} \frac{\partial L_{i}}{\partial u_{I t_{i}}}+\frac{\mathrm{d}^{2}}{\mathrm{~d} t_{i}^{2}} \frac{\partial L_{i}}{\partial u_{I t_{i}^{2}}}-\ldots
$$

Multi-time Euler-Lagrange equations for curves, $\mathcal{L}=\sum_{i} L_{i}[u] \mathrm{d} t_{i}$

$$
\frac{\delta_{i} L_{i}}{\delta u_{I}}=0 \quad \forall I \not \supset t_{i} \quad \text { and } \quad \frac{\delta_{i} L_{i}}{\delta u_{I t_{i}}}=\frac{\delta_{j} L_{j}}{\delta u_{I t_{j}}} \quad \forall I,
$$

Example: Kepler Problem

The classical Lagrangian of a particle in the gravitational potential

$$
L_{1}[q]=\frac{1}{2}\left|q_{t_{1}}\right|^{2}+\frac{1}{|q|}
$$

can be combined with

$$
L_{2}[q]=q_{t_{1}} \cdot q_{t_{2}}+\left(q_{t_{1}} \times q\right) \cdot e
$$

into a pluri-Lagrangian 1-form $L_{1} \mathrm{~d} t_{1}+L_{2} \mathrm{~d} t_{2}$ and consider $q=q\left(t_{1}, t_{2}\right)$.

Example: Kepler Problem

The classical Lagrangian of a particle in the gravitational potential

$$
L_{1}[q]=\frac{1}{2}\left|q_{t_{1}}\right|^{2}+\frac{1}{|q|}
$$

can be combined with

$$
L_{2}[q]=q_{t_{1}} \cdot q_{t_{2}}+\left(q_{t_{1}} \times q\right) \cdot e
$$

into a pluri-Lagrangian 1-form $L_{1} \mathrm{~d} t_{1}+L_{2} \mathrm{~d} t_{2}$ and consider $q=q\left(t_{1}, t_{2}\right)$.
Multi-time Euler-Lagrange equations:

$$
\begin{array}{rll}
\frac{\delta_{1} L_{1}}{\delta q}=0 & \Rightarrow & q_{t_{1} t_{1}}=-\frac{q}{|q|^{3}} \\
\frac{\delta_{2} L_{2}}{\delta q}=0 & \Rightarrow & \text { (Keplerian motion) } \\
\frac{\delta_{2} L_{2}}{\delta q_{t_{1}}}=0 & \Rightarrow & q_{t_{2}}=e \times q_{t_{1}} \\
\frac{\delta_{1} L_{1}}{\delta q_{t_{1}}}=\frac{\delta_{2} L_{2}}{\delta q_{t_{2}}} & \Rightarrow q_{t_{1}}=q_{t_{1}} & \text { (Rotation) }
\end{array}
$$

Table of Contents

(1) Introduction

(2) Pluri-Lagrangian 1-form systems (ODEs)
(3) Pluri-Lagrangian 2-form systems (PDEs)
(4) Hamiltonian structure of Lagrangian 1-form systems
(5) Hamiltonian structure of Lagrangian 2-form systems

Pluri-Lagrangian principle ($d=2$, continuous)

Given a 2-form

$$
\mathcal{L}=\sum_{i, j} L_{i j}[u] \mathrm{d} t_{i} \wedge \mathrm{~d} t_{j}
$$

find a field $u: \mathbb{R}^{N} \rightarrow \mathbb{C}$, such that $\int_{\Gamma} \mathcal{L}$ is critical on all smooth 2-surfaces Γ in multi-time \mathbb{R}^{N}, w.r.t. variations of u.

Example: KdV hierarchy, where $t_{1}=x$ is the shared space coordinate, t_{i} time for i-th flow. (Details to follow.)

Multi-time EL equations

Consider a Lagrangian 2-form $\mathcal{L}=\sum_{i, j} L_{i j}[u] \mathrm{d} t_{i} \wedge \mathrm{~d} t_{j}$.
Every smooth surface can be approximated arbitrarily well by stepped surfaces. Hence it is sufficient to require criticality on stepped surfaces, or just on their elementary corners.

Multi-time EL equations

 for $\mathcal{L}=\sum_{i, j} L_{i j}[u] \mathrm{d} t_{i} \wedge \mathrm{~d} t_{j}$$$
\begin{array}{lr}
\frac{\delta_{i j} L_{i j}}{\delta u_{l}}=0 & \forall I \not \nexists t_{i}, t_{j}, \\
\frac{\delta_{i j} L_{i j}}{\delta u_{l_{j}}}=\frac{\delta_{i k} L_{i k}}{\delta u_{l_{k}}} & \forall I \not \nexists t_{i}, \\
\frac{\delta_{i j} L_{i j}}{\delta u_{l_{t i} t_{j}}}+\frac{\delta_{j k} L_{j k}}{\delta u_{l_{t j} t_{k}}}+\frac{\delta_{k i} L_{k i}}{\delta u_{l_{t_{k} t_{i}}}}=0 & \forall I .
\end{array}
$$

Where

$$
\frac{\delta_{i j} L_{i j}}{\delta u_{I}}=\sum_{\alpha=0}^{\infty} \sum_{\beta=0}^{\infty}(-1)^{\alpha+\beta} \frac{\mathrm{d}^{\alpha}}{\mathrm{d} t_{i}^{\alpha}} \frac{\mathrm{d}^{\beta}}{\mathrm{d} t_{j}^{\beta}} \frac{\partial L_{i j}}{\partial u_{I t_{i}^{\alpha} t_{j}^{\beta}}}
$$

Example: Potential KdV hierarchy

$u_{t_{2}}=Q_{2}=u_{x x x}+3 u_{x}^{2}$,
$u_{t_{3}}=Q_{3}=u_{x x x x x}+10 u_{x} u_{x x x}+5 u_{x x}^{2}+10 u_{x}^{3}$,
where we identify $t_{1}=x$.
The differentiated equations $u_{x t_{i}}=\frac{\mathrm{d}}{\mathrm{d} x} Q_{i}$ are Lagrangian with

$$
\begin{aligned}
& L_{12}=\frac{1}{2} u_{x} u_{t_{2}}-\frac{1}{2} u_{x} u_{x x x}-u_{x}^{3}, \\
& L_{13}=\frac{1}{2} u_{x} u_{t_{3}}-u_{x} u_{x x x x x}-2 u_{x x} u_{x x x x}-\frac{3}{2} u_{x x x}^{2}+5 u_{x}^{2} u_{x x x}+5 u_{x} u_{x x}^{2}+\frac{5}{2} u_{x}^{4} .
\end{aligned}
$$

Example: Potential KdV hierarchy

$u_{t_{2}}=Q_{2}=u_{x x x}+3 u_{x}^{2}$,
$u_{t_{3}}=Q_{3}=u_{x x x x x}+10 u_{x} u_{x x x}+5 u_{x x}^{2}+10 u_{x}^{3}$,
where we identify $t_{1}=x$.
The differentiated equations $u_{x t_{i}}=\frac{\mathrm{d}}{\mathrm{d} x} Q_{i}$ are Lagrangian with

$$
\begin{aligned}
& L_{12}=\frac{1}{2} u_{x} u_{t_{2}}-\frac{1}{2} u_{x} u_{x x x}-u_{x}^{3}, \\
& L_{13}=\frac{1}{2} u_{x} u_{t_{3}}-u_{x} u_{x x x x x}-2 u_{x x} u_{x x x x}-\frac{3}{2} u_{x x x}^{2}+5 u_{x}^{2} u_{x x x}+5 u_{x} u_{x x}^{2}+\frac{5}{2} u_{x}^{4} .
\end{aligned}
$$

A suitable coefficient L_{23} of

$$
\mathcal{L}=L_{12} \mathrm{~d} t_{1} \wedge \mathrm{~d} t_{2}+L_{13} \mathrm{~d} t_{1} \wedge \mathrm{~d} t_{3}+L_{23} \mathrm{~d} t_{2} \wedge \mathrm{~d} t_{3}
$$

can be found (nontrivial task!) in the form

$$
L_{23}=\frac{1}{2}\left(u_{t_{2}} Q_{3}-u_{t_{3}} Q_{2}\right)+p_{23} .
$$

Example: Potential KdV hierarchy

- The equations $\frac{\delta_{12} L_{12}}{\delta u}=0$ and $\frac{\delta_{13} L_{13}}{\delta u}=0$ yield

$$
u_{x t_{2}}=\frac{\mathrm{d}}{\mathrm{~d} x} Q_{2} \quad \text { and } \quad u_{x t_{3}}=\frac{\mathrm{d}}{\mathrm{~d} x} Q_{3}
$$

- The equations $\frac{\delta_{12} L_{12}}{\delta u_{x}}=\frac{\delta_{32} L_{32}}{\delta u_{t_{3}}}$ and $\frac{\delta_{13} L_{13}}{\delta u_{x}}=\frac{\delta_{23} L_{23}}{\delta u_{t_{2}}}$ yield

$$
u_{t_{2}}=Q_{2} \quad \text { and } \quad u_{t_{3}}=Q_{3}
$$

the evolutionary equations!

- All other multi-time EL equations are corollaries of these.

Table of Contents

(1) Introduction

(2) Pluri-Lagrangian 1-form systems (ODEs)
(3) Pluri-Lagrangian 2-form systems (PDEs)
(4) Hamiltonian structure of Lagrangian 1-form systems
(5) Hamiltonian structure of Lagrangian 2-form systems

Hamiltonian structure of Lagrangian 1-form systems

Lagrangian 1-form systems and systems of commuting Hamiltonian flows are in 1-to-1 correspondence
[Suris, Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms. J. Geometric Mechanics, 2013]

Switching perspectives by Legendre transform is not possible, because

$$
\left|\frac{\partial^{2} \mathcal{L}}{\partial v^{2}}\right|=0
$$

so that

$$
\mathbb{F}: T Q \rightarrow T^{*} Q:(q, v) \mapsto\left(q, \frac{\partial \mathcal{L}}{\partial v}\right)
$$

Alternative strategy: Dirac reduction leads to a (constrained) Hamiltonian formulation of a degenerate Lagrangian system.

Dirac reduction

We focus on Lagrangians that are linear in the velocities:

$$
\mathcal{L}\left(q, q_{t}\right)=p(q)^{T} q_{t}-V(q)
$$

Notation: $p: Q \rightarrow \mathbb{R}^{N}$ is a function of the positions.
π is a bundle coordinate of $T^{*} Q$.
We would like to define the Hamiltonian by $H \circ \mathbb{F}=q_{t} \frac{\partial \mathcal{L}}{\partial q_{t}}-\mathcal{L}$, but this only specifies H on the image of the Legendre transform $\mathbb{F}\left(q, q_{t}\right)=(q, p(q)):$

$$
\begin{aligned}
H(q, p(q)) & =p(q)^{T} v-\mathcal{L}\left(q, q_{t}\right) \\
& =V(q)
\end{aligned}
$$

Let $H: T^{*} Q \rightarrow \mathbb{R}:(q, \pi) \rightarrow H(q, \pi)$ be any extension of this function and impose $\pi-p(q)=0$ as a constraint in the variational principle:

$$
\delta \int H(q, \pi)-\pi^{T} q_{t}-\lambda^{T}(\pi-p(q)) \mathrm{d} t=0
$$

Dirac reduction

$$
\delta \int H(q, \pi)-\pi^{T} q_{t}-\lambda^{T}(\pi-p(q)) \mathrm{d} t=0
$$

Variations with respect to q, π, and λ yield

$$
\begin{aligned}
\pi_{t} & =-\frac{\partial H}{\partial q}-\lambda^{T} \frac{\partial p(q)}{\partial q} \\
q_{t} & =\frac{\partial H}{\partial \pi}-\lambda \\
\pi & =p(q)
\end{aligned}
$$

In terms of the canonical Poisson bracket

$$
\{f, g\}=\frac{\partial f}{\partial \pi} \frac{\partial g}{\partial q}-\frac{\partial g}{\partial \pi} \frac{\partial f}{\partial q}
$$

on $T^{*} Q$, the evolution of a function $f: T^{*} Q \rightarrow \mathbb{R}$ is given by

$$
\frac{\mathrm{d} f}{\mathrm{~d} t}=\left\{H-\lambda^{T} c, f\right\}=\{H, f\}-\lambda^{T}\{c, f\}
$$

where $c=\pi-p(q)$.

Dirac bracket

Let $\mathcal{M}=\left\{c, c^{T}\right\}$ be the matrix with

$$
\mathcal{M}_{i j}=\left\{c_{i}, c_{j}\right\}=\frac{\partial p_{i}}{\partial q_{j}}-\frac{\partial p_{j}}{\partial q_{i}}
$$

The Dirac bracket on $T^{*} Q$ is given by

$$
\{f, g\}^{D}=\{f, g\}+\left\{c^{\top}, f\right\} \mathcal{M}^{-1}\{c, g\}
$$

Properties:

- The Dirac bracket $\{\cdot, \cdot\}^{D}$ is a weak Poisson bracket, i.e.:
- It is bilinear, skew-symmetric, and satisfies the Leibniz rule.
- The Jacobi identity holds on the constraint manifold $\{c=0\} \subset T^{*} Q$.
- For any function $f: T^{*} Q \rightarrow \mathbb{R}$ there holds

$$
\frac{\mathrm{d} f}{\mathrm{~d} t}=\{H, f\}^{D}
$$

- The constraints are Casimir functions: $\forall f: T^{*} Q \rightarrow \mathbb{R}:\{c, f\}^{D}=0$.

From pluri-Lagrangian to Hamiltonian systems

Consider a pluri-Lagrangian 1-form $\mathcal{L}=\sum_{i} \mathcal{L}_{i} \mathrm{~d} t_{i}$ consisting of

$$
\mathcal{L}_{1}\left(q, q_{1}\right)=\frac{1}{2}\left|q_{1}\right|^{2}-V_{1}(q)
$$

and

$$
\mathcal{L}_{i}\left(q, q_{1}, q_{i}\right)=q_{1}^{T} q_{i}-V_{i}\left(q, q_{1}\right) \quad \text { for } i \geq 2
$$

- Momenta $p=q_{1}$ have to agree due to the multi-time Euler-Lagrange equation
- The first Hamiltonian is found by Legendre transform:

$$
H_{1}(q, \pi)=\frac{1}{2}|\pi|^{2}+V_{1}(q)
$$

- For $i \geq 2$ we consider $r=q_{1}$ as a second independent variable. The Lagrangians $\mathcal{L}_{i}\left(q, r, q_{i}, r_{i}\right)=r q_{i}-V_{i}(q, r)$ are degenerate, so we use Dirac reduction.

From pluri-Lagrangian to Hamiltonian systems

The momenta corresponding to $\mathcal{L}_{i}\left(q, r, q_{i}, r_{i}\right)=r q_{i}-V_{i}(q, r)$ are

$$
p_{q}=\frac{\partial \mathcal{L}_{i}}{\partial q_{i}}=r \quad \text { and } \quad p_{r}=\frac{\partial \mathcal{L}_{i}}{\partial r_{i}}=0
$$

\Rightarrow constraints $c_{q}=c_{r}=0$ with $\quad c_{q}=\pi_{q}-r \quad$ and $\quad c_{r}=\pi_{r}$.
With respect to the Poisson bracket

$$
\{f, g\}=\frac{\partial f}{\partial \pi_{q}} \frac{\partial g}{\partial q}+\frac{\partial f}{\partial \pi_{r}} \frac{\partial g}{\partial r}-\frac{\partial g}{\partial \pi_{q}} \frac{\partial f}{\partial q}-\frac{\partial g}{\partial \pi_{r}} \frac{\partial f}{\partial r}
$$

we have

$$
\mathcal{M}=\left(\begin{array}{ll}
\left\{c_{q}, c_{q}\right\} & \left\{c_{q}, c_{r}\right\} \\
\left\{c_{r}, c_{q}\right\} & \left\{c_{r}, c_{r}\right\}
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \Rightarrow \quad \mathcal{M}^{-1}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

Dirac bracket

$$
\begin{aligned}
\{f, g\}^{D} & =\{f, g\}-\binom{\left\{f, c_{q}\right\}}{\left\{f, c_{r}\right\}}^{T} \mathcal{M}^{-1}\binom{\left\{c_{q}, g\right\}}{\left\{c_{r}, g\right\}} \\
& =\{f, g\}+\left\{f, c_{q}\right\}\left\{c_{r}, g\right\}-\left\{f, c_{r}\right\}\left\{c_{q}, g\right\} .
\end{aligned}
$$

From pluri-Lagrangian to Hamiltonian systems

Restricted to functions of q and r only (independent of momenta), the Dirac bracket reduces to

$$
\begin{aligned}
\{f, g\}^{D} & =\{f, g\}+\left\{f, c_{q}\right\}\left\{c_{r}, g\right\}-\left\{f, c_{r}\right\}\left\{c_{q}, g\right\} \\
& =0 \quad+\left\{f, \pi_{q}\right\}\left\{\pi_{r}, g\right\}-\left\{f, \pi_{r}\right\}\left\{\pi_{q}, g\right\} \\
& =-\frac{\partial f}{\partial q} \frac{\partial g}{\partial r}+\frac{\partial f}{\partial r} \frac{\partial g}{\partial q}
\end{aligned}
$$

This is the canonical Poisson bracket, with the role of momentum played by $r=q_{1}$.

Identifying $\pi=q_{1}$, all equations are Hamiltonian w.r.t. the canonical Poisson bracket and Hamiltonians

$$
\begin{aligned}
H_{1}(q, \pi) & =\frac{1}{2}|\pi|^{2}+V_{1}(q) \quad \text { and } \\
H_{i}(q, \pi) & =V_{i}(q, \pi) \quad \text { for } i \geq 2 \\
& =\pi_{q} q_{i}+\pi_{r} r_{i}-\mathcal{L}_{i} \quad \text { on the constraint manifold. }
\end{aligned}
$$

Closedness and involutivity

Lemma
On solutions (identifying $\pi=p$) there holds

$$
\mathrm{D}_{i} \mathcal{L}_{j}-\mathrm{D}_{j} \mathcal{L}_{i}=p_{j} q_{i}-p_{i} q_{j}=\left\{H_{j}, H_{i}\right\}^{D} .
$$

Proof.

- Calculus of variations: for any smooth test function $\phi: \mathbb{R} \rightarrow \mathbb{R}$:

$$
\begin{aligned}
\int \delta \mathcal{L}_{i}\left(q, q_{1}, q_{i}\right) \phi\left(t_{i}\right) \mathrm{d} t_{i} & =\int\left(p_{i} \delta q+p \delta q_{i}\right) \phi \mathrm{d} t_{i} \\
\Rightarrow \quad \delta \mathcal{L}_{i} & =p_{i} \delta q+p \delta q_{i}
\end{aligned}
$$

Choosing $\delta=\mathrm{D}_{j}$, we obtain

$$
\mathrm{D}_{j} \mathcal{L}_{i}=p_{i} q_{j}+p q_{i j}
$$

Hence

$$
\mathrm{D}_{i} \mathcal{L}_{j}-\mathrm{D}_{j} \mathcal{L}_{i}=p_{j} q_{i}-p_{i} q_{j}
$$

Closedness and involutivity

Lemma
On solutions (identifying $\pi=p$) there holds

$$
\mathrm{D}_{i} \mathcal{L}_{j}-\mathrm{D}_{j} \mathcal{L}_{i}=p_{j} q_{i}-p_{i} q_{j}=\left\{H_{j}, H_{i}\right\}^{D} .
$$

Proof.

- Calculus of variations:

$$
\mathrm{D}_{i} \mathcal{L}_{j}-\mathrm{D}_{j} \mathcal{L}_{i}=p_{j} q_{i}-p_{i} q_{j}
$$

- Hamiltonian formalism:

$$
\begin{aligned}
\mathrm{D}_{i} \mathcal{L}_{j}-\mathrm{D}_{j} \mathcal{L}_{i} & =\left\{H_{i}, p q_{j}-H_{j}\right\}^{D}-\left\{H_{j}, p q_{i}-H_{i}\right\}^{D} \\
& =2\left\{H_{j}, H_{i}\right\}^{D}+p_{i} q_{j}-p_{j} q_{i} .
\end{aligned}
$$

Closedness and involutivity

Lemma

On solutions (identifying $\pi=p$) there holds

$$
\mathrm{D}_{i} \mathcal{L}_{j}-\mathrm{D}_{j} \mathcal{L}_{i}=p_{j} q_{i}-p_{i} q_{j}=\left\{H_{j}, H_{i}\right\}^{D} .
$$

Proof.

- Calculus of variations:

$$
\mathrm{D}_{i} \mathcal{L}_{j}-\mathrm{D}_{j} \mathcal{L}_{i}=p_{j} q_{i}-p_{i} q_{j}
$$

- Hamiltonian formalism:

$$
\mathrm{D}_{i} \mathcal{L}_{j}-\mathrm{D}_{j} \mathcal{L}_{i}=2\left\{H_{j}, H_{i}\right\}^{D}+p_{i} q_{j}-p_{j} q_{i}
$$

Theorem

The Hamiltonians are in involution with respect to the Dirac bracket if and only if $\mathrm{d} \mathcal{L}=0$ on solutions.

Table of Contents

(1) Introduction

(2) Pluri-Lagrangian 1-form systems (ODEs)
(3) Pluri-Lagrangian 2-form systems (PDEs)

4 Hamiltonian structure of Lagrangian 1-form systems
(5) Hamiltonian structure of Lagrangian 2-form systems

Hamiltonian structure of Lagrangian 2-form systems

Action integral

$$
\int \mathcal{L}\left[u, u_{t}\right] \mathrm{d} x \wedge \mathrm{~d} t
$$

where square brackets denote dependence on any number of space derivatives:

$$
\left[u, u_{t}\right]=\left(u, u_{t}, u_{x}, u_{t x}, u_{x x}, u_{t x x}, \ldots\right)
$$

Assumption: the Lagrangian is linear in time-derivatives.
Then we can always find an equivalent Lagrangian of the form

$$
\mathcal{L}\left[u, u_{t}\right]=p[u] u_{t}-V[u],
$$

We introduce the constraint $c=\pi-p[u]=0$ and take any Hamiltonian $H[u, \pi]$ satisfying

$$
\begin{aligned}
H[u, p[u]] & =p[u] u_{t}-\mathcal{L}\left[u, u_{t}\right] \\
& =V[u] .
\end{aligned}
$$

Dirac reduction in classical field theory

We have the constrained variational principle in phase space

$$
\delta \int\left(H[u, \pi]-\pi u_{t}-\lambda(\pi-p[u])\right) \mathrm{d} x \wedge \mathrm{~d} t=0
$$

yielding the equations

$$
0=\frac{\delta H}{\delta u}+\pi_{t}+\frac{\delta \lambda p}{\delta u}, \quad 0=\frac{\delta H}{\delta \pi}-u_{t}-\lambda, \quad 0=c
$$

Consider the Poisson bracket

$$
\left\{\int f, \int g\right\}=\int\left(\frac{\delta_{x} f}{\delta \pi} \frac{\delta_{x} g}{\delta u}-\frac{\delta_{x} f}{\delta u} \frac{\delta_{x} g}{\delta \pi}\right) \mathrm{d} x
$$

on the space of formal integrals (functions mod time derivatives).
The time-evolution of any functional $\int f(x,[u, \pi])$ is given by

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \int f \mathrm{~d} x & =\int \frac{\delta f}{\delta u} u_{t}+\frac{\delta f}{\delta \pi} \pi_{t} \mathrm{~d} x \\
& =\left\{\int H, \int f\right\}-\left\{\int \lambda c, \int f\right\}
\end{aligned}
$$

Dirac reduction in classical field theory

The Poisson bracket

$$
\left\{\int f, \int g\right\}=\int\left(\frac{\delta_{x} f}{\delta \pi} \frac{\delta_{x} g}{\delta u}-\frac{\delta_{x} f}{\delta u} \frac{\delta_{x} g}{\delta \pi}\right) \mathrm{d} x
$$

does not satisfy the Leibniz rule (there is no multiplication on the space of functions $\bmod x$-derivatives). How to isolate λ from

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int f \mathrm{~d} x=\left\{\int H, \int f\right\}-\left\{\int \lambda c, \int f\right\} ?
$$

Introduce the bracket

$$
[f, g]=\sum_{k=0}^{\infty}\left(\mathrm{D}_{x}^{k}\left(\frac{\delta f}{\delta \pi_{x^{k}}}\right) \frac{\partial g}{\partial u_{x^{k}}}-\mathrm{D}_{x}^{k}\left(\frac{\delta f}{\delta u_{x^{k}}}\right) \frac{\partial g}{\partial \pi_{x^{k}}}\right)
$$

It does satisfy the Leibniz rule in the second argument and

$$
\left\{\int f \mathrm{~d} x, \int g \mathrm{~d} x\right\}=\int[f, g] \mathrm{d} x
$$

Dirac reduction in classical field theory

Let \mathcal{M} be the operator defined by $\mathcal{M} \phi=[\phi c, c]$ for any smooth function $\phi(x)$. The Dirac brackets are given by

$$
[f, g]^{D}=[f, g]-[f, c] \mathcal{M}^{-1}[g, c]
$$

and

$$
\left\{\int f, \int g\right\}^{D}=\int[f, g]^{D} \mathrm{~d} x
$$

- $\{\cdot, \cdot\}^{D}$ is skew-symmetric and satisfies the Jacobi identity.
- For any smooth function $f[u, \pi]$ there holds

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int f \mathrm{~d} x=\left\{\int H, \int f\right\}^{D}
$$

- The constraint is a Casimir function for the Dirac bracket: for any smooth test function ϕ we have

$$
\left\{\int \phi c, \int f\right\}^{D}=0
$$

From pluri-Lagrangian to Hamiltonian systems

First row of coefficients of $\mathcal{L}=\sum_{i<j} \mathcal{L}_{i j} \mathrm{~d} t_{i} \wedge \mathrm{~d} t_{j}$:

$$
\mathcal{L}_{1 j}=p[u] u_{j}-h_{j}[u]
$$

Impose the constraint $c=\pi-p[u]=0$ and consider $H_{1 j}=h_{j}[u]$.
The square bracket of the constraints is

$$
[\phi c, c]=-\sum_{l} \phi_{I} \frac{\partial p[u]}{\partial u_{I}}+\frac{\delta \phi p[u]}{\delta u}=: \mathcal{E}_{p} \phi
$$

Hence the Dirac bracket is

$$
\left\{\int f, \int g\right\}^{D}=\left\{\int f, \int g\right\}-\int[f, c] \mathcal{E}_{p}^{-1}[g, c]
$$

For functionals that do not depend on π, the it simplifies to

$$
\left\{\int f, \int g\right\}^{D}=\int \frac{\delta f}{\delta u} \mathcal{E}_{p}^{-1} \frac{\delta g}{\delta u}
$$

Example: potential KdV hierarchy

The pluri-Lagrangian structure for the KdV hierarchy has $p=\frac{1}{2} u_{x}$. Hence $\mathcal{E}_{p}=\mathrm{D}_{\chi}$ and

$$
\left\{\int f, \int g\right\}^{D}=\int \frac{\delta f}{\delta u} D_{x}^{-1} \frac{\delta g}{\delta u}
$$

If f and g depend only on derivatives of u, this becomes the Gardner bracket

$$
\left\{\int f, \int g\right\}^{D}=\int\left(\mathrm{D}_{x} \frac{\delta f}{\delta u_{x}}\right) \frac{\delta g}{\delta u_{x}}
$$

The interpretation of the Gardner bracket for the KdV equation as a Dirac bracket was first given in:
[MacFarlane. Equations of Korteweg-De Vries type. I Lagrangian and Hamiltonian formalism. CERN, 1982]

Example: schwarzian KdV hierarchy

$$
\begin{aligned}
& u_{2}=-\frac{3 u_{11}^{2}}{2 u_{1}}+u_{111} \\
& u_{3}=-\frac{45 u_{11}^{4}}{8 u_{1}^{3}}+\frac{25 u_{11}^{2} u_{111}}{2 u_{1}^{2}}-\frac{5 u_{111}^{2}}{2 u_{1}}-\frac{5 u_{11} u_{1111}}{u_{1}}+u_{11111}, \quad \ldots
\end{aligned}
$$

has a pluri-Lagrangian structure with coefficients

$$
\begin{aligned}
\mathcal{L}_{12}= & \frac{u_{2}}{2 u_{1}}-\frac{u_{11}^{2}}{2 u_{1}^{2}} \\
\mathcal{L}_{13}= & \frac{u_{3}}{2 u_{1}}-\frac{3 u_{11}^{4}}{8 u_{1}^{4}}+\frac{u_{111}^{2}}{2 u_{1}^{2}} \\
\mathcal{L}_{23}= & -\frac{45 u_{11}^{6}}{32 u_{1}^{6}}+\frac{57 u_{11}^{4} u_{111}}{16 u_{1}^{5}}-\frac{19 u_{11}^{2} u_{111}^{2}}{8 u_{1}^{4}}+\frac{7 u_{111}^{3}}{4 u_{1}^{3}}-\frac{3 u_{11}^{3} u_{1111}}{4 u_{1}^{4}}-\frac{3 u_{11} u_{111} u_{1111}}{2 u_{1}^{3}}+\frac{u_{1111}^{2}}{2 u_{1}^{2}} \\
& +\frac{3 u_{11}^{2} u_{11111}}{4 u_{1}^{3}}-\frac{u_{111} u_{1111}}{2 u_{1}^{12}}+\frac{u_{111} u_{112}}{u_{1}^{1}}-\frac{3 u_{11}^{3} u_{12}}{2 u_{1}^{4}}+\frac{2 u_{11} u_{111} u_{12}}{u_{1}^{1}}-\frac{u_{111} u_{12}}{u_{1}^{1}}+\frac{u_{11} u_{1}}{u_{1}^{2}} \\
& -\frac{27 u_{11}^{4} u_{2}}{16 u_{1}^{5}}+\frac{17 u_{11}^{2} u_{111} u_{2}}{4 u_{1}^{4}}-\frac{7 u_{111}^{2} u_{2}}{4 u_{1}^{3}}-\frac{3 u_{11} u_{111} u_{2}}{2 u_{1}^{3}}+\frac{u_{1111} u_{2}}{2 u_{1}^{2}}+\frac{u_{11}^{2} u_{3}}{4 u_{1}^{3}}-\frac{u_{111} u_{3}}{2 u_{1}^{2}},
\end{aligned}
$$

Example: schwarzian KdV hierarchy

In this example we have $p=\frac{1}{2 u_{x}}$, hence

$$
\mathcal{E}_{p}=\frac{1}{u_{x}^{2}} \mathrm{D}_{x}-\frac{u_{x x}}{u_{x}^{3}}
$$

and

$$
\mathcal{E}_{p}^{-1}=u_{x} \mathrm{D}_{x}^{-1} u_{x}
$$

This nonlocal operator seems to be the simplest Hamiltonian operator for the SKdV equation.
The Hamilton functions for the first two flows are

$$
H_{2}=\frac{u_{11}^{2}}{2 u_{1}^{2}} \quad \text { and } \quad H_{3}=\frac{3 u_{11}^{4}}{8 u_{1}^{4}}-\frac{u_{111}^{2}}{2 u_{1}^{2}} .
$$

Closedness and involutivity

Proposition

On solutions of the multi-time Euler-Lagrange equations there holds

$$
\left\{H_{1 i}, H_{1 j}\right\}^{D}=\int\left(p_{i} u_{j}-p_{j} u_{i}\right) \mathrm{d} x=\int\left(\mathrm{D}_{j} \mathcal{L}_{1 i}-\mathrm{D}_{i} \mathcal{L}_{1 j}\right) \mathrm{d} x .
$$

Since all quantities are defined modulo x-derivatives, we have

$$
\int \mathrm{D}_{1} \mathcal{L}_{i j} \mathrm{~d} x \equiv 0
$$

hence
There holds $\left\{H_{1 i}, H_{1 j}\right\}=0$ if and only if

$$
\int\left(\mathrm{D}_{1} \mathcal{L}_{i j}-\mathrm{D}_{i} \mathcal{L}_{1 j}+\mathrm{D}_{j} \mathcal{L}_{1 i}\right) \mathrm{d} x=0
$$

on solutions of the multi-time Euler-Lagrange equations.

Conclusions

Context

- Integrability can be formulated in Lagrangian terms.
- Connections of the pluri-Lagrangian (Lagrangian multiform) theory to established notions of integrability are an active topic of research.
Progress
- A pluri-Lagrangian hierarchy also possesses a Hamiltonian structure (under mild conditions).
Open question
- Can we derive a bi-Hamiltonian structure from the pluri-Lagrangian formalism?

References

- V. On the Hamiltonian structure of pluri-Lagrangian hierarchies. Soon on arXiv

Background:

- Lobb, Nijhoff. Lagrangian multiforms and multidimensional consistency. J. Phys. A. 2009.
- Suris. Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms. J. Geometric Mechanics, 2013
- Suris, V. On the Lagrangian structure of integrable hierarchies. In: Advances in Discrete Differential Geometry, Springer. 2016.
- Sleigh, Nijhoff, Caudrelier. A variational approach to Lax representations. J of Geometry and Physics, 2019.
- Sleigh, Nijhoff, Caudrelier. Variational symmetries and Lagrangian multiforms. arXiv:1906.05084
- Petrera, V. Variational symmetries and pluri-Lagrangian structures for integrable hierarchies of PDEs. arXiv:1906.04535

From Hamiltonian to pluri-Lagrangian systems

Example: Kepler Problem. Poisson-commuting Hamiltonians

$$
\begin{array}{ll}
H_{1}(q, \pi)=\frac{1}{2}|\pi|^{2}+|q|^{-1}, & \text { energy } \\
H_{2}(q, \pi)=(q \times \pi) \cdot e_{z}, & \text { 3rd component of the ang. momentum } \\
H_{3}(q, \pi)=|q \times \pi|^{2}, & \text { squared magnitude of the ang. momentum }
\end{array}
$$

where $q=(x, y, z)$ and e_{z} is the unit vector in the z-direction.
Lagrangian 1-form:

$$
\begin{aligned}
\mathcal{L}_{1} & =\frac{1}{2}\left|q_{1}\right|^{2}+|q|^{-1} \\
\mathcal{L}_{2} & =q_{1} \cdot q_{2}-\left(q \times q_{1}\right) \cdot e_{z} \\
\mathcal{L}_{3} & =q_{1} \cdot q_{3}-\left|q \times q_{1}\right|^{2}
\end{aligned}
$$

From Hamiltonian to pluri-Lagrangian systems

The multi-time Euler-Lagrange equations are

$$
\frac{\delta_{1} \mathcal{L}_{1}}{\delta q}=0 \quad \Rightarrow \quad q_{11}=\frac{q}{|q|^{3}}
$$

the physical equations of motion,

$$
\begin{aligned}
& \frac{\delta_{2} \mathcal{L}_{2}}{\delta q_{1}}=0 \quad \Rightarrow \quad q_{2}=e_{z} \times q \\
& \frac{\delta_{2} \mathcal{L}_{2}}{\delta q}=0 \quad \Rightarrow \quad q_{12}=-q_{1} \times e_{z}
\end{aligned}
$$

describing a rotation around the z-axis, and

$$
\begin{aligned}
& \frac{\delta_{3} \mathcal{L}_{3}}{\delta q_{1}}=0 \quad \Rightarrow \quad q_{3}=2|q|^{2} q_{1}+2\left(q \cdot q_{1}\right) q=2\left(q \times q_{1}\right) \times q \\
& \frac{\delta_{3} \mathcal{L}_{3}}{\delta q}=0 \quad \Rightarrow \quad q_{13}=2\left|q_{1}\right|^{2} q-2\left(q \cdot q_{1}\right) q_{1}
\end{aligned}
$$

describing a rotation around the angular momentum vector.

Alternative derivation

Note that the Hamiltonian operator D_{x}^{-1} can also be obtained without using Dirac reduction. Indeed, we can write the variational principle as

$$
\int \frac{1}{2} u_{t} \mathrm{D}_{x} u-h[u] \mathrm{d} x \wedge \mathrm{~d} t
$$

which is the variational principle in phase space for the Hamiltonian equation $u_{t}=\mathrm{D}_{x}^{-1} \frac{\delta h}{\delta u}$. This approach works whenever we can write $p=J u$ for some skew-adjoint operator J. This will not be the case in the next example.

