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Background: symplectic dynamics
Symplectic form w: closed non-degenerate 2-form on a 2n-dimensional
manifold M

A Hamilton function H : M — R induces a Hamiltonian vector field Xy
on M:
tx,w =dH

In Darboux coordinates (xi, ..., Xp, P1, - - - Pn)

w=de,-/\dx,—

1

The vector field Xy is given by
. _OH . oH

= P ax

Example. In mechanics, we usually have H(x, p) = 3|p|? + U(x) leading to

X = P, p = _U/(X)

Mats Vermeeren (TU Berlin) Discretization of contact systems November 4, 2019 1/25



Properties of Hamiltonian systems

The flow of F; : M — M : (x(0), p(0)) — (x(t), p(t)) of a Hamiltonian
vector field preserves the symplectic form,

(Ft)'w = w,
the corresponding volume

(Ft)'w"=w" =dpi A...Adpy Axy A ... Adxy,
and the energy,

H(x(t), p(t)) = H(x(0), p(0))-

If the system has symmetries, then (Noether's theorem) the corresponding
generalized momenta are conserved quantities.
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Lagrangian mechanics

If we can solve x = %—’; for p, then solutions to the Hamiltonian equations

satisfy a variational principle:

t
5/ L£(x,%)dt = 0
0

for variations dx of x leaving the endpoints x(0) and x(t) invariant, where

the Lagrangian is £(x, x) = px — H(x, p).
Critical curves are characterized by

troc docL
ox: 0= /5x+6 dt = /0<8x dt6>5 dt
& & T =0 (Euler-Lagrange equation)

Example. For H(x, p) = 3|p|? + U(x) we find
L{x, %) = X7 = U(x)
leading to the Euler-Lagrange equation —U'(x) —x =0
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Geometric discretization
Main idea

Discretization preserving the geometric structure often leads to improved
accuracy, especially over long time intervals.

A map &, : M — M, dpu(x, p) = (x,p) + O(h) is a consistent
discretization of the flow F; if

®h(x,p) = F'(x,p) + O(h*) (= (x,p) + O(h))
®, is called symplectic if it preserves w:
(Pp)'w =w.

An effective way to obtain sympletic integrators is by discretizing the
variational principle:

Look for a discrete curve xg, x1, ..., Xy minimizing the discrete action
> L(xi, xiv1; h),
i
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Properties of symplectic integrators
By definition, a symplectic integrator preserves the symplectic form,
(®n)'w = w,
and hence the corresponding volume
(Pp) w" =w".
A symplectic integrator very nearly preserves a modified energy Epoq =~ H:

Emod(q)Z(X’ P)) ~ Emod(Xa P)

over a time interval of length O(e™").

If the discretization has symmetries, then there exist conserved generalized
discrete momenta.
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Linear dissipation

Certain mechanical systems include an isotropic damping term that is
linear in the velocity:

x=-U'(x) — ax, acR, x:[0,T] = R"

or
X = p, p=-U(x)—ap

For o # 0 we do not have conservation of (the usual) energy or symplectic
form.

Is there a geometric description of such systems?
Can we use it for geometric discretization?

Mats Vermeeren (TU Berlin) Discretization of contact systems November 4, 2019 6 /25



Table of Contents

@ Contact Hamiltonian systems



Contact geometry
(2n + 1)-dimensional manifold M.

Contact structure

A distribution of hyperplanes £ C TM that is maximally non-integrable:
a submanifold that is always tangent to the distribution has dimension at
most n.

Locally, such a distribution is
given by the kernel of a 1-form 7 z
satisfying

n A (dn)" # 0,

called a contact form.

Multiplying n by a non-vanishing
function does not change the con-
tact structure.

f: M — M is a contact transformation if f*n = gn for some g : M — R.
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Contact Hamiltonian systems

There exist Darboux local coordinates (xi, ..., Xp, p1,- - -, Pn, Z) such that

the contact 1-form can be written as

n=dz — pdx :dz—Zp;dx,-.

Contact Hamiltonian vector field

Lx,n = fun and n(Xy) = —H,

where L is the Lie derivative and fy : M — R.
(In terms of the Reeb vector field, f; = —R,(H).)

For comparison with symplectic mechanics, note that
ix,(dp A dq) = ux,(dn) = —d(ux,n) + Lxn = dH + fun.

In Darboux coordinates the contact Hamiltonian equations are

. _OH : OH OH . OH r
X=—— p=———p— z=p— — H.
op’ Ox 0z’ op
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Damped mechanical systems

Contact Hamiltonian systems satisfy

dH _ 00
dt 0z
so dissipation can occur!

Example. A Hamiltonian of the form

1
H= §p2+ U(x)+ az

describes a mechanical system with linear damping:
X=p
p=-U(x)—ap
z=p?— H.
Written as a second order ODE:
x=-U(x) — ax.

The physical meaning of z will be discussed later.
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Contact geometry in thermodynamics

First law for of thermodynamics can be written as
oU=ToS+ PV —pudoN

i.e. states are constrained within a manifold with tangent spaces in the
kernel of
n=dU — TdS + PdV — udN

Various thermodynamical process can be written as Hamiltonian flows
with respect to the contact structure defined by 7.

[Mrugata, Nulton, Schén, Salamon. Contact structure in thermodynamic
theory. Rep. Math. Phys. 1991]

[Bravetti. Contact geometry and thermodynamics. International Journal
of Geometric Methods in Modern Physics, 2018.]
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Other applications

> Integrable systems

[Sergyeyev. New integrable (3 4 1)-dimensional systems and contact
geometry. Letters in Mathematical Physics, 2018.]

[Jovanovi¢ B., Jovanovi¢ V. Contact flows and integrable systems.
Journal of Geometry and Physics, 2015.]

» Optimal control

[J6zwikowski, Respondek. A contact covariant approach to optimal
control with applications to sub-Riemannian geometry. Math.
Control Signals Syst, 2016.]

[Ohsawa T. Contact geometry of the Pontryagin maximum principle.
Automatica, 2015.]
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Herglotz' variational principle
The contact Hamiltonian equation for z is
z=p——H
Pd

Herglotz' variational principle

Lagrangian £: TQ x R — R.
Given a curve x : [0, T] — Q, define z: [0, T] — R by z(0) = z and

2(t) = L(x(t), x(t), z(t))
We look for a curve x such that every variation of x that vanishes at the
boundary of [0, T] leaves the action z(T) invariant.

If £ does not depend on z we find the classical variational principle:
T
(T) = / L(x(8), %(8)) dt.
0

[Herglotz. Beriihrungstransformationen Lecture notes, Gottingen, 1930.]
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Herglotz' variational principle

A variation dx of x induces a variation 6z of z:

z(t) = L(x(t),x(t),z(t)) = oz= %6x + %&Jr ot 0z.

Ox Ox 0z
—_ <~
At) dB(t)
dt
B
The solution of §z(t) = A(t) + dB(t) dz(t) is

/0 " A B dr 52(0)}

-
— B(T) {/0 (g—féx + g—f&) e B ar + 52(0)]

Troc doL oOLoL
_ B(T) oL 405 OLOL ~B(7)
¢ /0 (ax dtox oz ax)éxe dr
oL oL

+ 52 (T)ox(T) e B(T) _ 57(000x(0) + 52(0)} .
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Herglotz' variational principle

Troc doL oLoL
— B(T) _ === —B(7)
02(T) =e [/0 <8X dt Ox oz 0z 8x> Oxe dr

oL oL

+ 55 (Tax(T) e~ BT — =2(0)6x(0) + 62(0) |
Variations satisfy dx(0) = 0x(T) = 0z(0) = 0.
Generalized Euler-Lagrange equations
oL doL oLoL _0

Ox  dt Ox t oz 0z Ox

If instead we restrict to solution curves, but vary the endpoints, we obtain
oL oL
02(T) = 52 (T)ox(T) - eP7) Iz (0)0x(0) +2(0)
Contact structure b (dz — pdx) = eE(N(dz — pdx)

where p = and ¢1 denotes the flow over the time interval [0, T].
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Discrete Herglotz variational principle

Variational integrator: approximate L(x, X, z) by L(xj, Xj+1, 2, Zj+1; h),
where h > 0 is the step size.

discrete Herglotz variational principle
Given x = (xp,...,xn) € QVt! we define z = (2, ..., zy) € RN+ by
7o =0 and
zj1 = 2 = hL(Xj; Xj+1, ), Zj41: h)
Look for a discrete curve x such that
dzj1y

Sl o vjiell,....N—1\.
dx; jedl,..., }

d

Then in particular, LN _ 0 for allje{1,...,N -1}
dxj

variations of x do not affect the final value of z.
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Discrete Herglotz variational principle

Discrete generalized Euler-Lagrange equation

0 = DaL(Xj-1, %), Zj-1,2) + D1L(xj, Xj+1, Zj, Zj11)
hDa L(xj—1,%,Zj—1,})
—hDaL(xj—1,%},2j-1,Z

+1 y(D3L(Xj, Xj11, Zj> Zj41) + Dal(xj-1, %), Zj-1, 7).

where D; is the partial derivative w.r.t. the i-th variable.

If L a consistent discretization of a continuous Lagrangian L,

DaL(Xj-1, %, 2j-1,2j) + D1L(X X1, 2, Zi41) & 5 — oo
hDoL(xj—1,Xj, Zj—1, Z}) oL
1 — hD4L(xj—1.%,2j-1,2)  Ox

Q
|

DsL(Xj, Xj+1, 2> Zj+1) + Dal(Xj-1, %), Z-1, Z)) = -~
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Contact structure

The discrete generalized Euler-Lagrange equation can be written as
hD2L(Xj-1, %), 2j-1, Z)

hD1L(xjs Xj+1, Zj Zj+1)
1 — hDaL(Xj-1,%j; Zj-1, %)

14 hD3L(%}, Xj11, 2}, Zj+1)

=0
Position-momentum formulation
FiTQxRe THQ xR : (-1, pj-1,2i-1) = (x5, P> ),
where p; = p:~ = p;” and
hD2L(Xj_1, %}, Zj-1, Zj)
1— hD4L(xj_1,%),2j-1, %)’

ot = MD1L0G, %41, 7, Zj41)
’ 1+ hDsL(xj; Xj 11, Zj, Zj+1)

pj_ =

The map F is a contact transformation with respect to the 1-form

dz — pdx.
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All contact maps are variational

Theorem
Iterations of any contact transformation
(x0, P, 20) = (x1, p1,21)
yield a discrete curve x = (xp, ..., xy) that solves the discrete Herglotz

variational principle for some discrete Lagrangian L(x;, Xj+1, Zj).

Proof idea. Like in the symplectic case, every contact transformation has a
generating function, which can be used as a discrete Lagrangian. |

In practice it is beneficial to take L symmetric in z; and zj;1, but from this
Theorem it follows that there is always an equivalent Lagrangian
independent of zj .
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Backward error analysis

Solutions of the difference equations

Ziy1 — Z;
j+1 J .
= L(xj, Xj+1,Zj, Zi+1; h)
Xj11 — 2X; + X;_
J+1 y] J—1 .
h2 = F(Xj,17Xj,Xj+1,Zj,LZj,Zj+1, h)

are formally interpolated by solutions of the modified equations
7 = Lmod(x, X, 2, h) = L(x,%,2) + hL1(x,%,2) + 2 Lo(x, %, 2) + ...
X = fmod(X, X, z; h) = f(x, %, 2) + hfi(x, %, 2) + h*h(x,%,2) + ...

(The power series are usually not convergent. Truncations need to be used
to make rigorous statements.)

The modified equations are also a contact system

In particular, X = fin0q(x, X, z; h) is the generalized Euler-Lagrange
equation of Ly,04(x, X, z, h).
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Hamiltonian integrators
In many examples, H(x, p,z) = A(p) + B(x) + Cz. Then

Xa = A'(p)0x + (PA(p) — A(P))0:
Xg = —B'(x)0, — B(x)0,
Xez = —pCd, — Cz,,

which are all explicitly integrable:

exp(tXa)(x, p, z) = (x + tA'(p), p ,z + t(pA(p) — A(p))
exp(tXg)(x, p, z) = (x ,p = t(B'(x) + B(x)), z + t(pA(p) — A(p))
exp(tXC)(X7 Pp; Z) = (X p—tpC 7eXp(Ct)Z )

Splitting integrator

h h h h
So(h) = exp(EXc) exp(EXB) exp(hXa) exp(EXB> exp(EXc) .

As a composition of contact maps, Sy(h) is itself a contact map.

Since it is symmetric, Sy is a second order integrator.
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Hamiltonian integrators

Given a second order contact integrator S, higher order contact
integrators can be obtained recursively by “Yoshida’'s trick”:

52n+2(h) = S2n(anh)52n(ﬁnh)52n(anh)

1

2n+F
where o, = L and 3, =22,
2_ 27+ 2_27nF1

A more complicated but similar construction for Sy applies for
Hamiltonians

H(t,x,p,z) = A(t, p) + B(t,x) + C(t)z

depending explicitly on time.

[Yoshida. Construction of higher order symplectic integrators. Physics

letters A, 1990]
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Numerical example: harmonic oscillator

Ez%)&z—%xz—az = X = —x—ax
Very small damping: contact integrators comparable to symplectic

integrators
h=0.25; a=0.01; initial conditions (0.5, 0.5)

Solution
ool N\
—— Contact2
Leapfrog
001 Ruth3
—— Reference
SR
0 10 20 ] 30 40 50
Relative Error
0.101 — Contact2
0.08 Leapfrog [\ /\ " f‘
[
0.06 |
0.04
0.02
0.00
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Numerical example: harmonic oscillator

L= ;X2 %X2—O(Z = X=-x—ax
Slightly larger damping: contact integrators better than symplectic

integrators
h=0.25; a=0.1; initial conditions (0.5, 0.5)

Solution
0.75
—— Contact2
0.50 Leapfrog
0.25 —— Ruth3
— Reference
0.00 .
-0.25
-0.50
0 10 40 50
Relatwe Error
/‘\ —— Contact2
0.04 /\ /\\ Leapfrog
0.03 f | | /\ q /\ — Ruth3
|
| N
|
0.02 [\f || \!/ 5\ \{ / /\
0.01 \ / ‘
\1
0.00

0 10 20 30 40 50
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Time-depenent example: spin-orbit mechanics

Flexible satellite in a fixed orbit, experiencing torque from gravity.
The torque is a time-dependent linear dissipation:

p> N, (0,t) dC1 . dC O Ny(0,1t)
H=—~—+—"""—4+——=2z = 0+——-—+—"=0.
2 C dt C dt C C
Example: capture into resonance.
3.0 —— Before capture
After capture 16
2.5
L4
< 207 o 12
15 10F
10[ 0.8}
o 2000 1000 6000 8000 10000 0 P B P =
time 0
Angular velocity decreasing Poincaré section: angle and angular

velocity at fixed point in the orbit
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Conclusions

» Contact mechanics is less known than symplectic mechanics, but has
significant applications in physics and a similarly rich structure.

» Structure-preserving discretizations for contact systems can be
obtained using many of the same ideas as for symplectic systems.
References:
[V, Bravetti, Seri. Contact variational integrators. J Phys A, 2019]

[Bravetti, Seri, V, Zadra. Numerical integration in celestial mechanics: a case for
contact geometry. arXiv:1909.02613]
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Conclusions

» Contact mechanics is less known than symplectic mechanics, but has
significant applications in physics and a similarly rich structure.
Though it's getting more attention recently...

Web of Science O gt

_ Number op papers men-
' tioning “contact geome-
try” and “Hamiltonian”

1987-2019
s o« omm um M ||||I

» Structure-preserving discretizations for contact systems can be
obtained using many of the same ideas as for symplectic systems.

References:
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contact geometry. arXiv:1909.02613]
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