A variational principle for integrable systems

Mats Vermeeren

Geometry and Mathematical Physics seminar
Loughborough

February 2, 2022

UNIVERSITY OF LEEDS

 Postdoc with Frânk Nijhoff and Vincent Caudrelier on the variational principle for integrable systems

Contents

(1) Introduction
(2) Pluri-Lagrangian systems / Lagrangian multiforms
(3) The exterior drivative

4 Connections to Hamiltonian structures and variational symmetries
(5) Discrete pluri-Lagrangian systems
(6) Continuum limits
(7) Summary and outlook

Contents

(1) Introduction

(2) Pluri-Lagrangian systems / Lagrangian multiforms
(3) The exterior drivative

4 Connections to Hamiltonian structures and variational symmetries
(5) Discrete pluri-Lagrangian systems
(6) Continuum limits
(7) Summary and outlook

Poisson Brackets

Poisson bracket of two functions on $T^{*} Q$:

$$
\{f, g\}=\sum_{i=1}^{N}\left(\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}}\right)
$$

Dynamics of a Hamiltonian system:

$$
\dot{q}_{i}=\left\{q_{i}, H\right\}, \quad \dot{p}_{i}=\left\{p_{i}, H\right\}, \quad \frac{\mathrm{d}}{\mathrm{~d} t} f(q, p)=\{f(q, p), H\}
$$

In particular: f is conserved if and only if $\{f, H\}=0$.
Properties:

$$
\begin{aligned}
& \text { anti-symmetry: }\{f, g\}=-\{g, f\} \\
& \quad \text { bilinearity: }\{f, g+\lambda h\}=\{f, g\}+\lambda\{f, h\} \\
& \text { Leibniz property: }\{f, g h\}=\{f, g\} h+g\{f, h\} \\
& \text { Jacobi identity: }\{f,\{g, h\}\}+\{g,\{h, f\}\}+\{h,\{f, g\}\}=0
\end{aligned}
$$

Liouville-Arnold integrability

A Hamiltonian system with Hamilton function $H: \mathbb{R}^{2 N} \rightarrow \mathbb{R}$ is Liouville-Arnold integrable if there exist N functionally independent Hamilton functions $H=H_{1}, H_{2}, \ldots H_{N}$ such that $\left\{H_{i}, H_{j}\right\}=0$.

- Each H_{i} defines a dynamical system.
- Each H_{i} is a conserved quantity for all these systems.
- The dynamics is confined to a leaf of the foliation $\left\{H_{i}=\right.$ const $\}$.
- There exists a symplectic change of variables $(p, q) \mapsto(\bar{p}, \bar{q})$ such that $H_{i}(p, q)=\bar{H}_{i}(\bar{p})$.
System evolves linearly in these action-angle variables.
- The flows commute...

Multi-time perspective on a Liouville integrable system

Let $z=(q, p)$. Consider two Hamiltonian ODEs

$$
\begin{aligned}
\frac{\mathrm{d} f(z)}{\mathrm{d} t_{1}} & =\left\{f(z), H_{1}(z)\right\} \\
\frac{\mathrm{d} f(z)}{\mathrm{d} t_{2}} & =\left\{f(z), H_{2}(z)\right\} \quad \text { with }\left\{H_{1}, H_{2}\right\}=0
\end{aligned}
$$

The flows commute, meaning that evolution can be parametrised by the $\left(t_{1}, t_{2}\right)$ plane, called multi-time.

Additional commuting equations can be accommodated by increasing the dimension of multi-time: \mathbb{R}^{n} instead of \mathbb{R}^{2}.

Contents

(1) Introduction
(2) Pluri-Lagrangian systems / Lagrangian multiforms
(3) The exterior drivative

4 Connections to Hamiltonian structures and variational symmetries
(5) Discrete pluri-Lagrangian systems

6 Continuum limits
(7) Summary and outlook

Lagrangian formulation of Liouville integrable system
On the Hamiltonian side, commutativity is implied by $\left\{H_{i}, H_{j}\right\}=0$. What about the Lagrangian side?
Suppose we have Lagrange functions L_{i} associated to H_{i}.
Lagrangian multi-form (Pluri-Lagrangian) principle for ODEs
Combine the L_{i} into a 1 -form

$$
\mathcal{L}[q]=\sum_{i=1}^{N} L_{i}[q] \mathrm{d} t_{i}
$$

Look for dynamical variables $q\left(t_{1}, \ldots, t_{N}\right)$ such that the action

$$
S_{\Gamma}=\int_{\Gamma} \mathcal{L}[q]
$$

is critical w.r.t. variations of q, simultaneously over every curve Γ in multi-time \mathbb{R}^{N}

Multi-time Euler-Lagrange equations for $\mathcal{L}=\sum_{i} L_{i}[q] \mathrm{d} t_{i}$

Usual Euler-Lagrange equations: $\frac{\delta_{i} L_{i}}{\delta q_{l}}=0 \quad \forall I \nexists t_{i}$,

$$
\text { Additional conditions: } \frac{\delta_{i} L_{i}}{\delta q_{l_{i}}}=\frac{\delta_{j} L_{j}}{\delta q_{l_{j}}} \quad \forall I,
$$

where

- I is a multi-index, q_{I} the corresponding partial derivative
- $\frac{\delta_{i}}{\delta q_{l}}$ is the variational derivative in the direction of t_{i} :

$$
\begin{aligned}
\frac{\delta_{i} L_{i}}{\delta q_{l}} & =\sum_{\alpha=0}^{\infty}(-1)^{\alpha} \frac{\mathrm{d}^{\alpha}}{\mathrm{d} t_{i}^{\alpha}} \frac{\partial L_{i}}{\partial q_{l t_{i}^{\alpha}}} \\
& =\frac{\partial L_{i}}{\partial q_{l}}-\frac{\mathrm{d}}{\mathrm{~d} t_{i}} \frac{\partial L_{i}}{\partial q_{l t_{i}}}+\frac{\mathrm{d}^{2}}{\mathrm{~d} t_{i}^{2}} \frac{\partial L_{i}}{\partial q_{l t_{i}^{2}}}-\ldots
\end{aligned}
$$

Example: Kepler Problem

The classical Lagrangian

$$
L_{1}[q]=\frac{1}{2}\left|q_{t_{1}}\right|^{2}+\frac{1}{|q|}
$$

can be combined with

$$
L_{2}[q]=q_{t_{1}} \cdot q_{t_{2}}+\left(q_{t_{1}} \times q\right) \cdot e \quad(e \text { fixed unit vector })
$$

into a Lagrangian 1-form $\mathcal{L}=L_{1} \mathrm{~d} t_{1}+L_{2} \mathrm{~d} t_{2}$.
Multi-time Euler-Lagrange equations:

$$
\begin{array}{rll}
\frac{\delta_{1} L_{1}}{\delta q}=0 & \Rightarrow & q_{t_{1} t_{1}}=-\frac{q}{|q|^{3}} \\
\frac{\delta_{2} L_{2}}{\delta q}=0 & \Rightarrow & \text { (Keplerian motion) } \\
\frac{\delta_{2} L_{2}}{\delta q_{t_{1}}}=0 & \Rightarrow q_{t_{1} t_{2}}=e \times q_{t_{1}} & \\
\frac{\delta_{1} L_{1}}{\delta q_{t_{1}}}=e \times q \quad \text { (Rotation) } \\
\frac{\delta_{2} L_{2}}{\delta q_{t_{2}}} & \Rightarrow q_{t_{1}}=q_{t_{1}} &
\end{array}
$$

Derivation of the multi-time Euler-Lagrange equations Consider a Lagrangian one-form $\mathcal{L}=\sum_{i} L_{i}[q] \mathrm{d} t_{i}$

Lemma

If the action $\int_{S} \mathcal{L}$ is critical on all stepped curves S in \mathbb{R}^{N}, then it is critical on all smooth curves.

Variations are local, so it is sufficient to look at a general L-shaped curve $S=S_{i} \cup S_{j}$.

Derivation of the multi-time Euler-Lagrange equations

$$
\begin{aligned}
& \delta \int_{S_{i}} L_{i} \mathrm{~d} t_{i}=\int_{S_{i}} \sum_{I \not \supset t_{i}} \sum_{\alpha=0}^{\infty} \frac{\partial L_{i}}{\partial q_{I t_{i}^{\alpha}}} \delta q_{I t_{i}^{\alpha}} \mathrm{d} t_{i} \\
& =\int_{S_{i}} \sum_{I \not \supset t_{i}} \frac{\delta_{i} L_{i}}{\delta q_{I}} \delta q_{I} \mathrm{~d} t_{i}+\left.\sum_{I} \frac{\delta_{i} L_{i}}{\delta q_{I t_{i}}} \delta q_{I}\right|_{p},
\end{aligned}
$$

where

$$
\begin{align*}
& \frac{\delta_{i} L_{i}}{\delta q_{I}}=\sum_{\alpha=0}^{\infty}(-1)^{\alpha} \frac{\mathrm{d}^{\alpha}}{\mathrm{d} t_{i}^{\alpha}} \frac{\partial L_{i}}{\partial q_{l t_{i}^{\alpha}}}=\frac{\partial L_{i}}{\partial q_{I}}-\frac{\mathrm{d}}{\mathrm{~d} t_{i}} \frac{\partial L_{i}}{\partial q_{l t_{i}}}+\frac{\mathrm{d}^{2}}{\mathrm{~d} t_{i}^{2}} \frac{\partial L_{i}}{\partial q_{l t_{i}^{2}}}-\ldots \\
& \frac{\delta_{i} L_{i}}{\delta q_{I}}=0 \quad \forall I \not \supset t_{i} \quad \text { and } \quad \frac{\delta_{i} L_{i}}{\delta q_{l t_{i}}}=\frac{\delta_{j} L_{j}}{\delta q_{l t_{j}}} \quad \forall I
\end{align*}
$$

Suris. Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms. J. Geometric Mechanics, 2013
Suris, V. On the Lagrangian structure of integrable hierarchies. In: Advances in Discrete Differential Geometry, Springer. 2016.

Pluri-Lagrangian principle for PDEs $(d=2)$
Notation: for PDEs we use u instead of q for the field.
Given a 2-form

$$
\mathcal{L}[u]=\sum_{i, j} L_{i j}[u] \mathrm{d} t_{i} \wedge \mathrm{~d} t_{j}
$$

find a field $u: \mathbb{R}^{N} \rightarrow \mathbb{R}$, such that $\int_{\Gamma} \mathcal{L}[u]$ is critical on all smooth 2-surfaces Γ in multi-time \mathbb{R}^{N}, w.r.t. variations of u.

Example: KdV hierarchy, where $t_{1}=x$ is the shared space coordinate, t_{i} time for i-th flow. (Details to follow.)

Multi-time EL equations

Consider a Lagrangian 2-form $\mathcal{L}[u]=\sum_{i, j} L_{i j}[u] \mathrm{d} t_{i} \wedge \mathrm{~d} t_{j}$.
Every smooth surface can be approximated arbitrarily well by stepped surfaces.
It is sufficient to require criticality on stepped surfaces. Variations can be taken locally, so it is sufficient to consider elementary corners.

Multi-time EL equations

 for $\mathcal{L}[u]=\sum_{i, j} L_{i j}[u] \mathrm{d} t_{i} \wedge \mathrm{~d} t_{j}$$$
\begin{array}{lr}
\frac{\delta_{i j} L_{i j}}{\delta u_{l}}=0 & \forall I \not \nexists t_{i}, t_{j}, \\
\frac{\delta_{i j} L_{i j}}{\delta u_{l_{t}}}=\frac{\delta_{i k} L_{i k}}{\delta u_{l t_{k}}} & \forall I \not \supset t_{i}, \\
\frac{\delta_{i j} L_{i j}}{\delta_{1}}+\frac{\delta_{j k} L_{j k}}{\delta_{1}}+\frac{\delta_{k i} L_{k i}}{\delta_{1}}=0 & \forall I .
\end{array}
$$

Where

$$
\frac{\delta_{i j} L_{i j}}{\delta u_{l}}=\sum_{\alpha=0}^{\infty} \sum_{\beta=0}^{\infty}(-1)^{\alpha+\beta} \frac{\mathrm{d}^{\alpha}}{\mathrm{d} t_{i}^{\alpha}} \frac{\mathrm{d}^{\beta}}{\mathrm{d} t_{j}^{\beta}} \frac{\partial L_{i j}}{\partial u_{I t_{i}^{\alpha} t_{j}^{\beta}}}
$$

Example: Potential KdV hierarchy

$u_{t_{2}}=Q_{2}=u_{x x x}+3 u_{x}^{2}$,
$u_{t_{3}}=Q_{3}=u_{x x x x x}+10 u_{x} u_{x x x}+5 u_{x x}^{2}+10 u_{x}^{3}$,
where we identify $t_{1}=x$.
The differentiated equations $u_{x t_{i}}=\frac{\mathrm{d}}{\mathrm{d} x} Q_{i}$ are Lagrangian with

$$
\begin{aligned}
& L_{12}=\frac{1}{2} u_{x} u_{t_{2}}-\frac{1}{2} u_{x} u_{x x x}-u_{x}^{3} \\
& L_{13}=\frac{1}{2} u_{x} u_{t_{3}}-\frac{1}{2} u_{x x x}^{2}+5 u_{x} u_{x x}^{2}-\frac{5}{2} u_{x}^{4}
\end{aligned}
$$

A suitable coefficient L_{23} of

$$
\mathcal{L}=L_{12} \mathrm{~d} t_{1} \wedge \mathrm{~d} t_{2}+L_{13} \mathrm{~d} t_{1} \wedge \mathrm{~d} t_{3}+L_{23} \mathrm{~d} t_{2} \wedge \mathrm{~d} t_{3}
$$

can be found (nontrivial task!) in the form

$$
L_{23}=\frac{1}{2}\left(u_{t_{3}} Q_{2}-u_{t_{2}} Q_{3}\right)+p_{23} .
$$

Example: Potential KdV hierarchy

- The equations $\frac{\delta_{12} L_{12}}{\delta u}=0$ and $\frac{\delta_{13} L_{13}}{\delta u}=0$ yield

$$
u_{x t_{2}}=\frac{\mathrm{d}}{\mathrm{dx}} Q_{2} \quad \text { and } \quad u_{x t_{3}}=\frac{\mathrm{d}}{\mathrm{~d} x} Q_{3}
$$

- The equations $\frac{\delta_{12} L_{12}}{\delta u_{x}}=\frac{\delta_{32} L_{32}}{\delta u_{t_{3}}}$ and $\frac{\delta_{13} L_{13}}{\delta u_{x}}=\frac{\delta_{23} L_{23}}{\delta u_{t_{2}}}$ yield

$$
u_{t_{2}}=Q_{2} \quad \text { and } \quad u_{t_{3}}=Q_{3}
$$

the evolutionary equations!

- All other multi-time EL equations are corollaries of these.

Suris, V. On the Lagrangian structure of integrable hierarchies. In: Advances in Discrete Differential Geometry, Springer. 2016.

Contents

(1) Introduction
(2) Pluri-Lagrangian systems / Lagrangian multiforms
(3) The exterior drivative

4 Connections to Hamiltonian structures and variational symmetries
(5) Discrete pluri-Lagrangian systems

6 Continuum limits
(7) Summary and outlook

Closedness of the Lagrangian form

One could require additionaly that \mathcal{L} is closed on solutions \hookrightarrow "Lagrangian multiform systems" (Leeds).
Then the action is not just critical on every curve/surface, but also takes the same value on every curve/surface.

Maybe this is not necessary as part of the definition, because one can show

Proposition

$\mathrm{d} \mathcal{L}$ is constant on the set of solutions.
\hookrightarrow "Pluri-Lagrangian systems" (Berlin).

Closedness: examples

Kepler problem $\mathcal{L}=L_{1} \mathrm{~d} t_{1}+L_{2} \mathrm{~d} t_{2}$ with

$$
\begin{aligned}
& L_{1}[q]=\frac{1}{2}\left|q_{t_{1}}\right|^{2}+\frac{1}{|q|} \\
& L_{2}[q]=q_{t_{1}} \cdot q_{t_{2}}+\left(q_{t_{1}} \times q\right) \cdot e \quad(e \text { fixed unit vector })
\end{aligned}
$$

Multi-time Euler-Lagrange equations: $q_{t_{1} t_{1}}=-\frac{q}{|q|^{3}}$ and $q_{t_{2}}=e \times q$
Coefficient of $\mathrm{d} \mathcal{L}$:

$$
\frac{\mathrm{d} L_{2}}{\mathrm{~d} t_{1}}-\frac{\mathrm{d} L_{1}}{\mathrm{~d} t_{2}}=\left(q_{t_{1} t_{1}}+\frac{q}{|q|^{3}}\right)\left(q_{t_{2}}-e \times q\right)
$$

Potential $K d V u_{t_{2}}=Q_{2}$ and $u_{t_{3}}=Q_{3}$. Coefficient of $\mathrm{d} \mathcal{L}$:

$$
\begin{aligned}
\frac{\mathrm{d} L_{23}}{\mathrm{~d} x}-\frac{\mathrm{d} L_{13}}{\mathrm{~d} t_{2}}+\frac{\mathrm{d} L_{12}}{\mathrm{~d} t_{3}}= & \frac{1}{2}\left(u_{t_{2}}-Q_{2}\right) \frac{\mathrm{d}}{\mathrm{~d} x}\left(u_{t_{3}}-Q_{3}\right) \\
& -\frac{1}{2}\left(u_{t_{3}}-Q_{3}\right) \frac{\mathrm{d}}{\mathrm{~d} x}\left(u_{t_{2}}-Q_{2}\right)
\end{aligned}
$$

$\delta \mathrm{d} \mathcal{L}$

In the previous examples, the coefficients of $\mathrm{d} \mathcal{L}$ have a double zero on solutions.

This is no coincidence:
Theorem
The variational principle is equivalent to

$$
\delta \mathrm{d} \mathcal{L}=0
$$

i.e. the exterior derivative is invariant under infinitesimal variations.

If we do not require that $\delta \mathcal{L}=0$ on solutions (the "pluri-Lagrangian" convention), then it is possible that

$$
\mathrm{d} \mathcal{L}=\text { constant }+ \text { double zero. }
$$

Contents

(1) Introduction
(2) Pluri-Lagrangian systems / Lagrangian multiforms
(3) The exterior drivative

4 Connections to Hamiltonian structures and variational symmetries
(5) Discrete pluri-Lagrangian systems

6 Continuum limits
(7) Summary and outlook

Closedness and involutivity

We can pass between the pluri-Lagrangian and Hamiltonian formalisms for 1 -forms* and 2-forms ${ }^{\dagger}$.

Lemma ($\mathrm{d} \mathcal{L}$ for 1 -forms)
On solutions there holds $\frac{\mathrm{d} L_{j}}{\mathrm{~d} t_{i}}-\frac{\mathrm{d} L_{i}}{\mathrm{~d} t_{j}}=\left\{H_{j}, H_{i}\right\}$.
It follows that:
Theorem
The Hamiltonians are in involution if and only if $\mathrm{d} \mathcal{L}=0$ on solutions.

[^0]
Variational Symmetries and Lagrangian forms

Connection provided by the closedness property $\mathrm{d} \mathcal{L}=0$:
1-forms If $\mathrm{d}\left(\sum_{i} L_{i} \mathrm{~d} t_{i}\right)=0$, then $\frac{\mathrm{d} L_{k}}{\mathrm{~d} t_{j}}=\frac{\mathrm{d} L_{j}}{\mathrm{~d} t_{k}}$
$\Rightarrow t_{j}$-flow changes L_{k} by a t_{k}-derivative.
\Rightarrow flows are variational symmetries of each other:
2-forms If $\mathrm{d}\left(\sum_{i, j} L_{i j} \mathrm{~d} t_{i} \wedge \mathrm{~d} t_{j}\right)=0$, then $\frac{\mathrm{d} L_{i j}}{\mathrm{~d} t_{k}}=\frac{\mathrm{d} L_{i k}}{\mathrm{~d} t_{j}}-\frac{\mathrm{d} L_{j k}}{\mathrm{~d} t_{i}}$
$\Rightarrow t_{k}$-flow changes $L_{i j}$ by a divergence in $\left(t_{i}, t_{j}\right)$.
\Rightarrow flows are variational symmetries of each other
Idea: use variational symmetries to construct Lagrangian form.
Sleigh, Nijhoff, Caudrelier. Variational symmetries and Lagrangian multiforms. Letters in Mathematical Physics, 2020.
Petrera, V. Variational symmetries and pluri-Lagrangian structures for integrable hierarchies of PDEs. European Journal of Mathematics, 2021.

Contents

(1) Introduction
(2) Pluri-Lagrangian systems / Lagrangian multiforms
(3) The exterior drivative

4 Connections to Hamiltonian structures and variational symmetries
(5) Discrete pluri-Lagrangian systems
(6) Continuum limits
(7) Summary and outlook

Discretisation of Hamiltonian systems

Hamiltonian ODE \rightarrow symplectic map

Liouville-Arnold system \rightarrow commuting symplectic maps (or symplectic map with conserved quantities?)

Hamiltonian PDE \rightarrow partial difference equation: multisymplectic map on a lattice?

Quad equations

$$
\mathcal{Q}\left(U, U_{1}, U_{2}, U_{12}, \lambda_{1}, \lambda_{2}\right)=0
$$

Subscripts of U denote lattice shifts, λ_{1}, λ_{2} are parameters.
Invariant under symmetries of the square, affine in each of U, U_{1}, U_{2}, U_{12}.

Integrability for systems quad equations: Multi-dimensional consistency of

$$
\mathcal{Q}\left(U, U_{i}, U_{j}, U_{i j}, \lambda_{i}, \lambda_{j}\right)=0
$$

i.e. the thrunderee ways of calculating U_{123} give the same result.

Classification (under some extra assumptions) by Adler, Bobenko and Suris (ABS List).
Example: lattice potential KdV :
$\left(U-U_{12}\right)\left(U_{1}-U_{2}\right)-\lambda_{1}+\lambda_{2}=0$

Variational principle for quad equations

For some discrete 2-form

$$
\mathcal{L}\left(\square_{i j}\right)=\mathcal{L}\left(U, U_{i}, U_{j}, U_{i j}, \lambda_{i}, \lambda_{j}\right)
$$

the action $\sum \mathcal{L}(\square)$ is critical on all 2-surfaces Γ in \mathbb{Z}^{N} simultaneously.

Discretising Hamiltonian structures was ambiguous. Here, the discrete and continuous variational principles are essentially the same.

Lobb, Nijhoff. Lagrangian multiforms and multidimensional consistency. J. Phys. A. 2009.

Contents

(1) Introduction

(2) Pluri-Lagrangian systems / Lagrangian multiforms
(3) The exterior drivative
4) Connections to Hamiltonian structures and variational symmetries
(5) Discrete pluri-Lagrangian systems
6) Continuum limits
(7) Summary and outlook

Continuum limit of an integrable difference equation

Miwa shifts*

Skew embedding of the mesh \mathbb{Z}^{N} into multi-time \mathbb{R}^{N}
Discrete U is a sampling of the continuous u :

$$
\begin{aligned}
& U=U(\mathrm{n})=u\left(t_{1}, t_{2}, \ldots, t_{N}\right) \\
& U_{i}=U\left(\mathrm{n}+\mathfrak{e}_{i}\right)=u\left(t_{1}-2 \lambda_{i}, t_{2}+2 \frac{\lambda_{i}^{2}}{2}, \ldots, t_{N}+2(-1)^{N} \frac{\lambda_{i}^{N}}{N}\right)
\end{aligned}
$$

Write quad equation in terms of q and expand in λ_{1}. In the leading order, we only see t_{1}-derivatives of q, but we want to obtain PDEs.
\hookrightarrow leading order cancellation required to get a meaningful result.
\hookrightarrow whole hierarchy from single difference equation.

[^1]
Continuum limit of the Lagrangian

- Using Miwa correspondence:

$$
\text { Discrete } L \quad \rightarrow \quad \text { Power series } \mathcal{L}_{\text {disc }}[u(\mathrm{t})]
$$

Action for $\mathcal{L}_{\text {disc }}[u(\mathrm{t})]$ is still a sum.

- Euler-Maclaurin formula (sum $\stackrel{\text { formal power series }}{\longleftrightarrow}$ integral)

$$
\mathcal{L}_{\text {Miwa }}\left([u], \lambda_{1}, \lambda_{2}\right)=\sum_{i, j=0}^{\infty} \frac{B_{i} B_{j}}{i!j!} \partial_{1}^{i} \partial_{2}^{j} \mathcal{L}_{\mathrm{disc}}\left([u], \lambda_{1}, \lambda_{2}\right)
$$

where the differential operators are $\partial_{k}=\sum_{j=1}^{N}(-1)^{j+1} \frac{2 \lambda_{k}^{j}}{j} \frac{\mathrm{~d}}{\mathrm{~d} t_{j}}$

- Then there holds $L_{\text {disc }}(\square)=\int \mathcal{L}_{\text {Miwa }}\left([u(\mathrm{t})], \lambda_{1}, \lambda_{2}\right) \eta_{1} \wedge \eta_{2}$, where η_{1} and η_{2} are the 1 -forms dual to the Miwa shifts. This suggests the Lagrangian 2-form

$$
\sum_{1 \leq i<j \leq N} \mathcal{L}_{\mathrm{Miwa}}\left([u], \lambda_{i}, \lambda_{j}\right) \eta_{i} \wedge \eta_{j}
$$

Continuum limit of a Lagrangian 2-form

$$
L\left(U, U_{1}, U_{2}, U_{12}, \lambda_{1}, \lambda_{2}\right) \quad \text { Suitable choice } \Rightarrow \text { leading order cancellat }
$$

Miwa shifts, Taylor expansion

$$
\mathcal{L}_{\mathrm{disc}}\left([u], \lambda_{1}, \lambda_{2}\right)
$$

Euler-Maclaurin formula

$$
\begin{gathered}
\mathcal{L}_{\text {Miwa }}\left([u], \lambda_{1}, \lambda_{2}\right)=\sum_{i, j=1}^{\infty}(-1)^{i+j} 4 \frac{\lambda_{1}^{i}}{i} \frac{\lambda_{2}^{j}}{j} \mathcal{L}_{i, j}[u] \\
\downarrow
\end{gathered}
$$

$\mathcal{L}_{\text {Miwa }}\left([u], \lambda_{i}, \lambda_{j}\right) \eta_{i} \wedge \eta_{j} \quad \approx \quad \sum_{1 \leq i<j \leq N} \mathcal{L}_{i, j}[u] \mathrm{d} t_{i} \wedge \mathrm{~d} t_{j}$
V. Continuum limits of pluri-Lagrangian systems. Journal of Integrable Systems, 2019.

Contents

(1) Introduction

(2) Pluri-Lagrangian systems / Lagrangian multiforms
(3) The exterior drivative

4 Connections to Hamiltonian structures and variational symmetries
(5) Discrete pluri-Lagrangian systems
6) Continuum limits
(7) Summary and outlook

Summary

- The pluri-Lagrangian (or Lagrangian multiform) principle is a widely applicable characterization of integrability:
Applies to ODEs and PDEs, discrete and continuous.
- Closedness of the Lagrangian form, i.e. $\mathrm{d} \mathcal{L}=0$, is related to variational symmetries and Hamiltonians in involution.
- Tools to construct Lagrangian 1- and 2-forms:
- Variational symmetries
- Hamiltonian structures
- Continuum limits

To do

Work in progress:

- A non-abelian symmetry group can be captured by using a Lie group as multi-time instead of \mathbb{R}^{N}.
- Application to semi-discrete systems.

Further questions:

- Relation to bi-Hamiltonian structures
- Use the pluri-Lagrangian principle to characterise special solutions.
- Classification of Lagrangian multi-forms.
- Application to infinite-dimensional symmetry groups
\hookrightarrow Noether's second theorem.
- Application to quantum integrable systems, path integrals, ...

Selected references

Discrete Lobb, Nijhoff. Lagrangian multiforms and multidimensional consistency. J. Phys. A. 2009.

- Boll, Petrera, Suris. What is integrability of discrete variational systems? Proc. R. Soc. A. 2014.
- V. Continuum limits of pluri-Lagrangian systems. Journal of Integrable Systems, 2019
Continuous Suris. Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms. J. Geometric Mechanics, 2013
- Suris, V. On the Lagrangian structure of integrable hierarchies. In: Advances in Discrete Differential Geometry, Springer. 2016.
- Petrera, V. Variational symmetries and pluri-Lagrangian structures for integrable hierarchies of PDEs. European Journal of Mathematics, 2021
- V. Hamiltonian structures for integrable hierarchies of Lagrangian PDEs Open Communications in Nonlinear Mathematical Physics, 2021.

Thank you for your attention!

[^0]: *Suris. Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms. J. Geometric Mechanics, 2013
 ${ }^{\dagger}$ V. Hamiltonian structures for integrable hierarchies of Lagrangian PDEs Open Communications in Nonlinear Mathematical Physics, 2021.

[^1]: *Miwa. On Hirota's difference equations. Proceedings of the Japan Academy A, 1982.

