

# A Lagrangian perspective on integrability

Mats Vermeeren

VII Iberoamerican Meeting on Geometry Mechanics and Control

March 7-11, 2022

### Contents









### Hamiltonian Systems

Hamilton function  $H: T^*Q \cong \mathbb{R}^{2N} \to \mathbb{R}: (q, p) \mapsto H(q, p)$  determines dynamics:

$$\dot{q}_i = rac{\partial H}{\partial p_i}$$
 and  $\dot{p}_i = -rac{\partial H}{\partial q_i}$ 

Poisson bracket of two functionals on  $T^*Q$ :

$$\{f,g\} = \sum_{i=1}^{N} \left( \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} - \frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} \right)$$

Dynamics:

$$\frac{\mathrm{d}}{\mathrm{d}t}f(\mathsf{q},\mathsf{p}) = \{H(q,p), f(\mathsf{q},\mathsf{p})\}$$

# Background: Liouville integrability

A Hamiltonian system with Hamilton function  $H : \mathbb{R}^{2N} \to \mathbb{R}$  is Liouville integrable if there exist N functionally independent Hamilton functions  $H = H_1, H_2, \ldots H_N$  such that  $\{H_i, H_j\} = 0$ .

- Each H<sub>i</sub> defines its own flow: N dynamical systems
- Each H<sub>i</sub> is a conserved quantity for all flows.
- The dynamics is confined to a leaf of the foliation  $\{H_i = \text{const}\}$ .
- If this foliation is compact, its leaves are tori.
- Dynamics on these tori are linear in action-angle variables.
- The flows commute.

Integrability = being part of a large set of compatible equations.

# Two commuting flows

Let z = (q, p). Consider two Hamiltonian ODEs  $\frac{\mathrm{d}f(z)}{\mathrm{d}t_1} = \{H_1(z), f(z)\}$ with  $\{H_1, H_2\} = 0$   $\frac{\mathrm{d}f(z)}{\mathrm{d}t_2} = \{H_2(z), f(z)\}$ 

The flows commute, meaning that evolution can be parametrised by the  $(t_1, t_2)$  plane, called multi-time.



Additional commuting equations can be accommodated by increasing the dimension of multi-time:  $\mathbb{R}^n$  instead of  $\mathbb{R}^2$ .

## Lagrangian formulation of Liouville integrable system

On the Hamiltonian side, commutativity is implied by  $\{H_i, H_j\} = 0$ .

What about the Lagrangian side?

Suppose we have Lagrange functions  $L_i$  associated to  $H_i$ .

# Lagrangian formulation of Liouville integrable system

On the Hamiltonian side, commutativity is implied by  $\{H_i, H_j\} = 0$ .

What about the Lagrangian side?

Suppose we have Lagrange functions  $L_i$  associated to  $H_i$ .

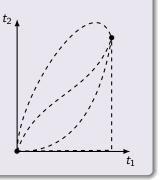
Pluri-Lagrangian (Lagrangian multi-form) principle for ODEs combine the  $L_i$  into a Lagrangian 1-form

$$\mathcal{L}[q] = \sum_{i=1}^{N} L_i[q] \,\mathrm{d}t_i.$$

Look for dynamical variables  $q(t_1, \ldots, t_N)$  such that the action

$$S_{\Gamma} = \int_{\Gamma} \mathcal{L}[q]$$

is critical w.r.t. variations of q, simultaneously over every curve  $\Gamma$  in multi-time  $\mathbb{R}^N$ 



# Multi-time Euler-Lagrange equations

Assume that

 $L_1[q] = L_1(q, q_{t_1})$  and  $L_i[q] = L_i(q, q_{t_1}, q_{t_i}), i \neq 1$ Then the multi-time Euler-Lagrange equations for  $\mathcal{L} = \sum_i L_i[q] dt_i$  are

| Usual Euler-Lagrange equations:    | $\frac{\partial L_i}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t_i} \frac{\partial L_i}{\partial q_{t_i}} = 0$                      |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Usual EL wrt to alien derivatives: | $\frac{\partial L_i}{\partial q_{t_1}} - \frac{\mathrm{d}}{\mathrm{d}t_i} \frac{\partial L_i}{\partial q_{t_1 t_i}} = 0,  i \neq 1$ |
| Additional conditions:             | $\frac{\partial L_i}{\partial q_{t_i}} = \frac{\partial L_j}{\partial q_{t_j}}$                                                     |

Suris. Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms. J. Geometric Mechanics, 2013

Generalisation to higher order Lagrangians in:

Suris, V. On the Lagrangian structure of integrable hierarchies. In: Advances in Discrete Differential Geometry, Springer. 2016.

Mats Vermeeren

# Example: Kepler Problem

The classical Lagrangian

$$L_1[q] = \frac{1}{2}|q_{t_1}|^2 + \frac{1}{|q|}$$

can be combined with

 $L_2[q] = q_{t_1} \cdot q_{t_2} + (q_{t_1} \times q) \cdot e \qquad (e \text{ fixed unit vector})$ into a Lagrangian 1-form  $\mathcal{L} = L_1 dt_1 + L_2 dt_2$ .

# Example: Kepler Problem

The classical Lagrangian

$$L_1[q] = \frac{1}{2}|q_{t_1}|^2 + \frac{1}{|q|}$$

can be combined with

 $L_2[q] = q_{t_1} \cdot q_{t_2} + (q_{t_1} \times q) \cdot e \qquad (e \text{ fixed unit vector})$ into a Lagrangian 1-form  $\mathcal{L} = L_1 dt_1 + L_2 dt_2$ . Multi-time Euler-Lagrange equations:

$$\frac{\partial L_1}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t_1} \frac{\partial L_1}{\partial q_{t_1}} = 0 \quad \Rightarrow \quad q_{t_1t_1} = -\frac{q}{|q|^3} \quad \text{(Keplerian motion)}$$

$$\frac{\partial L_2}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t_2} \frac{\partial L_2}{\partial q_{t_2}} = 0 \quad \Rightarrow \quad q_{t_1t_2} = e \times q_{t_1}$$

$$\frac{\partial L_2}{\partial q_{t_1}} = 0 \quad \Rightarrow \quad q_{t_2} = e \times q \quad \text{(Rotation)}$$

$$\frac{\partial L_1}{\partial q_{t_1}} = \frac{\partial L_2}{\partial q_{t_2}} \quad \Rightarrow \quad q_{t_1} = q_{t_1}$$

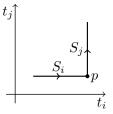
Mats Vermeeren

Consider a Lagrangian one-form  $\mathcal{L} = \sum_{i} L_{i}[q] dt_{i}$ 

#### Lemma

If the action  $\int_{S} \mathcal{L}$  is critical on all stepped curves S in  $\mathbb{R}^{N}$ , then it is critical on all smooth curves.

Variations are local, so it is sufficient to look at an L-shaped curve  $S = S_i \cup S_j$ .



On one of the straight pieces,  $S_i$  ( $i \neq 1$ ), we get

I.

 $t_j$ 

On one of the straight pieces,  $S_i$  ( $i \neq 1$ ), we get

$$\delta \int_{S_i} L_i \, \mathrm{d}t_i = \int_{S_i} \left( \frac{\partial L_i}{\partial q} \delta q + \frac{\partial L_i}{\partial q_{t_1}} \delta q_{t_1} + \frac{\partial L_i}{\partial q_{t_i}} \delta q_{t_i} \right) \mathrm{d}t_i$$

Integration by parts (wrt  $t_i$  only) yields

$$\delta \int_{S_i} L_i \, \mathrm{d}t_i = \int_{S_i} \left( \left( \frac{\partial L_i}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t_i} \frac{\partial L_i}{\partial q_{t_i}} \right) \delta q + \frac{\partial L_i}{\partial q_{t_1}} \delta q_{t_1} \right) \mathrm{d}t_i + \frac{\partial L_i}{\partial q_{t_i}} \delta q \bigg|_p$$

Since p is an interior point of the curve, we cannot set  $\delta q(p) = 0!$ 

 $t_j$ 

On one of the straight pieces,  $S_i$   $(i \neq 1)$ , we get

$$\delta \int_{S_i} L_i \, \mathrm{d}t_i = \int_{S_i} \left( \frac{\partial L_i}{\partial q} \delta q + \frac{\partial L_i}{\partial q_{t_1}} \delta q_{t_1} + \frac{\partial L_i}{\partial q_{t_i}} \delta q_{t_i} \right) \mathrm{d}t_i$$

Integration by parts (wrt  $t_i$  only) yields

$$\delta \int_{S_i} L_i \, \mathrm{d}t_i = \int_{S_i} \left( \left( \frac{\partial L_i}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t_i} \frac{\partial L_i}{\partial q_{t_i}} \right) \delta q + \frac{\partial L_i}{\partial q_{t_1}} \delta q_{t_1} \right) \mathrm{d}t_i + \frac{\partial L_i}{\partial q_{t_i}} \delta q \bigg|_p$$

Since p is an interior point of the curve, we cannot set  $\delta q(p) = 0!$ Arbitrary  $\delta q$  and  $\delta q_{t_1}$  so we find:

Multi-time Euler-Lagrange equations  

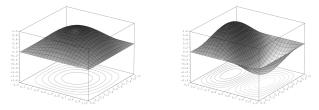
$$\frac{\partial L_i}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t_i} \frac{\partial L_i}{\partial q_{t_i}} = 0, \qquad \frac{\partial L_i}{\partial q_1} = 0, \qquad \frac{\partial L_i}{\partial q_{t_i}} = \frac{\partial L_j}{\partial q_{t_j}}$$

# PDEs (2-dimensional)

# Pluri-Lagrangian (Lagrangian multi-form) principle Given a 2-form

$$\mathcal{L} = \sum_{i,j} L_{ij}[q] \,\mathrm{d}t_i \wedge \mathrm{d}t_j,$$

find a field  $q(t_1, \ldots, t_N)$ , such that  $\int_{\Gamma} \mathcal{L}$  is critical on all smooth 2-dimensional surfaces  $\Gamma$  in multi-time  $\mathbb{R}^N$ , w.r.t. variations of q.



Multi-time Euler-Lagrange equations are again a combination of the usual Euler-Lagrange equations and new ones involving several  $L_{ij}$ .

Examples: potential KdV hierarchy, AKNS hierarchy, ...

Mats Vermeeren

### Connections to established concepts

We can pass between the pluri-Lagrangian and Hamiltonian formalisms for 1-forms\* and 2-forms<sup>†</sup>.

The Hamiltonians are in involution if and only if  $d\mathcal{L} = 0$  on solutions.

- Lagrangian 2-forms can be derived from matrix Lax pairs with a rational dependence on the spectral parameter.<sup>‡</sup>
- ► The flows of a pluri-Lagrangian system are variational symmetries of each other if and only if dL = 0 on solutions.<sup>§</sup>

\* Suris. Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms. J. Geometric Mechanics, 2013

<sup>†</sup> V. Hamiltonian structures for integrable hierarchies of Lagrangian PDEs Open Communications in Nonlinear Mathematical Physics, 2021.

 $^{\ddagger}$  Sleigh, Nijhoff, Caudrelier. A variational approach to Lax representations. Journal of Geometry and Physics, 2019.

<sup>§</sup> Petrera, V. Variational symmetries and pluri-Lagrangian structures for integrable hierarchies of PDEs. European Journal of Mathematics, 2021

# Discretisation of Hamiltonian systems

 ${\sf Hamiltonian}~{\sf ODE}~~\rightarrow~~{\sf symplectic}~{\sf map}$ 

 $\begin{array}{rcl} \mbox{Liouville-Arnold system} & \rightarrow & \mbox{commuting symplectic maps} \\ & & \mbox{(or symplectic map with conserved quantities?)} \end{array}$ 

# Quad equations

 $\mathcal{Q}(U, U_1, U_2, U_{12}, \lambda_1, \lambda_2) = 0$ 

- Subscripts of *U* denote lattice shifts.
- $\lambda_1, \lambda_2$  are parameters.
- Invariant under symmetries of the square, affine in each of U, U<sub>1</sub>, U<sub>2</sub>, U<sub>12</sub>.

Discrete analogue of commuting flows:

#### Multi-dimensional consistency

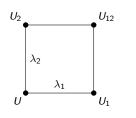
The three ways of calculating  $U_{123}$ , using

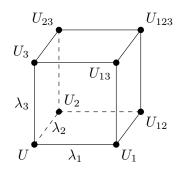
$$\mathcal{Q}(U, U_i, U_j, U_{ij}, \lambda_i, \lambda_j) = 0,$$

and its shifts, give the same result.

Example: lattice potential KdV:

$$(U-U_{12})(U_1-U_2)-\lambda_1+\lambda_2=0$$





# Quad equations

 $\mathcal{Q}(U, U_1, U_2, U_{12}, \lambda_1, \lambda_2) = 0$ 

- Subscripts of *U* denote lattice shifts.
- $\lambda_1, \lambda_2$  are parameters.
- Invariant under symmetries of the square, affine in each of U, U<sub>1</sub>, U<sub>2</sub>, U<sub>12</sub>.

Discrete analogue of commuting flows:

#### Multi-dimensional consistency

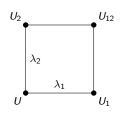
The three ways of calculating  $U_{123}$ , using

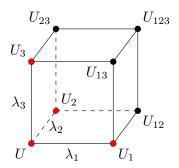
$$\mathcal{Q}(U, U_i, U_j, U_{ij}, \lambda_i, \lambda_j) = 0,$$

and its shifts, give the same result.

Example: lattice potential KdV:

$$(U-U_{12})(U_1-U_2)-\lambda_1+\lambda_2=0$$





# Quad equations

 $\mathcal{Q}(U, U_1, U_2, U_{12}, \lambda_1, \lambda_2) = 0$ 

- Subscripts of *U* denote lattice shifts.
- $\lambda_1, \lambda_2$  are parameters.
- Invariant under symmetries of the square, affine in each of U, U<sub>1</sub>, U<sub>2</sub>, U<sub>12</sub>.

Discrete analogue of commuting flows:

#### Multi-dimensional consistency

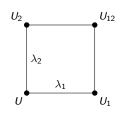
The three ways of calculating  $U_{123}$ , using

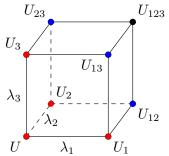
$$\mathcal{Q}(U, U_i, U_j, U_{ij}, \lambda_i, \lambda_j) = 0,$$

and its shifts, give the same result.

Example: lattice potential KdV:

$$(U-U_{12})(U_1-U_2)-\lambda_1+\lambda_2=0$$



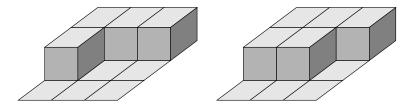


# Variational principle for quad equations

For some discrete 2-form

$$\mathcal{L}(\Box_{ij}) = \mathcal{L}(U, U_i, U_j, U_{ij}, \lambda_i, \lambda_j),$$

the action  $\sum_{\Box \in \Gamma} \mathcal{L}(\Box)$  is critical on all 2-surfaces  $\Gamma$  in  $\mathbb{Z}^N$  simultaneously.



Discretising Hamiltonian structures is ambiguous. But the discrete and continuous variational principles are essentially the same.

Lobb, Nijhoff. Lagrangian multiforms and multidimensional consistency. J. Phys. A. 2009.

Mats Vermeeren

A Lagrangian perspective on integrability

# Summary

- The pluri-Lagrangian (or Lagrangian multiform) principle is a widely applicable characterization of integrability: Applies to ODEs and PDEs, discrete and continuous.
- Closedness of the Lagrangian form, i.e. dL = 0, is related to variational symmetries and Hamiltonians in involution.
- Construction of Lagrangian 1- and 2-forms using:
  - Variational symmetries
  - Hamiltonian structures
  - Continuum limits



# To do

Work in progress:

- A non-abelian symmetry group can be captured by using a Lie group as multi-time instead of R<sup>N</sup>.
- Application to semi-discrete systems.

Further questions:

- Relation to bi-Hamiltonian structures
- Classification of Lagrangian multi-forms.
- Application to infinite-dimensional symmetry groups

 $\hookrightarrow$  Noether's second theorem.

# To do

Work in progress:

- A non-abelian symmetry group can be captured by using a Lie group as multi-time instead of R<sup>N</sup>.
- Application to semi-discrete systems.

Further questions:

- Relation to bi-Hamiltonian structures
- Classification of Lagrangian multi-forms.
- Application to infinite-dimensional symmetry groups

 $\hookrightarrow$  Noether's second theorem.

#### Thank you for listening!

¡Gracias por escuchar!

You can ask your questions in the Forum or via the links in the description