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Linear vs nonlinear di�erential equations

Linear: nice solutions and properties: traveling waves, superposition
principle

Nonlinear: often chaotic, di�cult to understand

Integrable: nonlinear but �nice�

Example: KdV equation vt = vxxx + 6vvx with soliton solutions

https://youtu.be/hfc3IL9gAts
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Soliton interaction

→ x

↓ t

Asymptotic behaviour: like superposition, but with phase shift.
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Integrable systems

Most nonlinear di�erential equations (wether ODE or PDE) are impossible
to solve explicitly.

Integrable systems are the exception. They have some underlying structure
which helps us. Often, this structure consists of a number of symmetries:

An equation is integrable if has su�ciently many symmetries.

Each symmetry, in it in�nitesimal form, de�nes a di�erential equation.
Hence:

An equation is integrable if it is part of a su�ciently large family of
compatible equations.

A common interpretation of �compatible� is given in terms of Hamiltonian
mechanics.
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Classical mechanics

Hamiltonian mechanics
Hamilton function

H : R2N ∼= T ∗Q → R :

(q, p) 7→ H(q, p)

Typically

H(q, p) =
1

2m
p2 + U(q)

Dynamics given by canonical equa-
tions

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi

Flow consists of symplectic maps
and preserves H.

Lagrangian mechanics
Lagrange function

L : R2N ∼= TQ → R :

(q, q̇) 7→ L(q, q̇)

Typically

L(q, q̇) =
m

2
q̇2 − U(q)

Dynamics follows curves which are
minmizers (critical points) of the
action ∫

L(q, q̇) dt
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Poisson Brackets

Poisson bracket of two functions on T ∗Q:

{f , g} =
N∑
i=1

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
Dynamics of a Hamiltonian system:

q̇i = {H, qi}, ṗi = {H, pi},
d

dt
f (q, p) = {H, f }

In particular: f is conserved if and only if {H, f } = 0.

A Hamiltonian system with Hamilton function H : R2N → R is Liouville
integrable if there exist N functionally independent Hamilton functions
H = H1,H2, . . .HN such that {Hi ,Hj} = 0.

▶ Each Hi de�nes its own �ow: N dynamical systems.

▶ Each Hi is a conserved quantity for all �ows.
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Liouville-Arnold integrability

A Hamiltonian system with Hamilton function H : R2N → R is Liouville
integrable if there exist N functionally independent Hamilton functions
H = H1,H2, . . .HN such that {Hi ,Hj} = 0.

▶ The dynamics is con�ned to a leaf of the foliation {Hi = const}.
▶ If this foliation is compact, its leaves are tori.

Example: central force in the plane:

▶ Dynamics on these tori are linear in action-angle variables.

▶ The �ows commute.
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Two commuting �ows

Let z = (q, p). Consider two Hamiltonian ODEs

df (z)

dt1
= {f (z),H1(z)}

df (z)

dt2
= {f (z),H2(z)}

with {H1,H2} = 0

The �ows commute, meaning that evolution can be parameterised by the
(t1, t2) plane, called multi-time.

t1

t2

•
Initial condition

z(0, 0)

• z(t1, t2) independent
of path through
multi-time

Additional commuting equations can be accommodated by increasing the
dimension of multi-time: Rn instead of R2.
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Lagrangian formulation of Liouville integrable system

On the Hamiltonian side, commutativity is implied by {Hi ,Hj} = 0.

What about the Lagrangian side?

Suppose we have Lagrange functions Li associated to Hi .

Lagrangian multi-form (Pluri-Lagrangian) principle for ODEs

Combine the Li into a 1-form

L[q] =
N∑
i=1

Li [q] dti .

Look for dynamical variables q(t1, . . . , tN)
such that the action

SΓ =

∫
Γ
L[q]

is critical w.r.t. variations of q, simultaneously
over every curve Γ in multi-time RN t1

t2

•

•
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Multi-time Euler-Lagrange equations

Assume that

L1[q] = L1(q, qt1) and Li [q] = Li (q, qt1 , qti ), i ̸= 1

Then the multi-time Euler-Lagrange equations for L =
∑
i

Li [q] dti are

Usual Euler-Lagrange equations:
∂Li
∂q

− d

dti

∂Li
∂qti

= 0

Usual EL wrt to alien derivatives:
∂Li
∂qt1

− d

dti

∂Li
∂qt1ti

= 0, i ̸= 1

Additional conditions:
∂Li
∂qti

=
∂Lj
∂qtj
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Example: Kepler Problem

The classical Lagrangian

L1[q] =
1

2
|qt1 |2 +

1

|q|
can be combined with

L2[q] = qt1 · qt2 + (qt1 × q) · e (e �xed unit vector)

into a Lagrangian 1-form L = L1dt1 + L2dt2.

Multi-time Euler-Lagrange equations:

∂L1
∂q

− d

dt1

∂L1
∂qt1

= 0 ⇒ qt1t1 = − q

|q|3
(Keplerian motion)

∂L2
∂q

− d

dt2

∂L2
∂qt2

= 0 ⇒ qt1t2 = e × qt1

∂L2
∂qt1

= 0 ⇒ qt2 = e × q (Rotation)

∂L1
∂qt1

=
∂L2
∂qt2

⇒ qt1 = qt1

This 1-form captures just one symmetry. There are more symmetries which
make the Kepler system (super-)integrable.

Mats Vermeeren Lagrangians in integrable systems March 2, 2022 11 / 30



Derivation of the multi-time Euler-Lagrange equations

Consider a Lagrangian one-form L =
∑
i

Li [q] dti

Lemma

If the action
∫
S L is critical on all stepped curves S

in RN , then it is critical on all smooth curves.

Variations are local, so it is su�cient to look at an
L-shaped curve S = Si ∪ Sj .

ti

tj

Si

Sj

p
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Derivation of the multi-time Euler-Lagrange equations

On one of the straight pieces, Si (i ̸= 1), we get

δ

∫
Si

Li dti =

∫
Si

(
∂Li
∂q

δq +
∂Li
∂qt1

δqt1 +
∂Li
∂qti

δqti

)
dti

Integration by parts (wrt ti only) yields ti

tj

Si

Sj

p

δ

∫
Si

Li dti =

∫
Si

((
∂Li
∂q

− d

dti

∂Li
∂qti

)
δq +

∂Li
∂qt1

δqt1

)
dti +

∂Li
∂qti

δq

∣∣∣∣
p

Since p is an interior point of the curve, we cannot set δq(p) = 0!

Arbitrary δq and δqt1 so we �nd:

Multi-time Euler-Lagrange equations

∂Li
∂q

− d

dti

∂Li
∂qti

= 0,
∂Li
∂qt1

= 0,
∂Li
∂qti

=
∂Lj
∂qtj
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Higher order Lagranigans

Multi-time Euler-Lagrange equations

Usual Euler-Lagrange equations:
δiLi
δqI

= 0 ∀I ̸∋ ti ,

Additional conditions:
δiLi
δqIti

=
δjLj
δqItj

∀I ,

where

▶ I is a multi-index, qI the corresponding partial derivative

▶
δi
δqI

is the variational derivative in the direction of ti :

δiLi
δqI

=
∞∑
α=0

(−1)α
d
α

dtαi

∂Li
∂qItαi

=
∂Li
∂qI

− d

dti

∂Li
∂qIti

+
d
2

dt2i

∂Li
∂qIt2i

− . . .
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Pluri-Lagrangian principle for PDEs (d = 2)

Given a 2-form
L[q] =

∑
i ,j Lij [q] dti ∧ dtj ,

�nd a �eld q : RN → R, such that

∫
Γ
L[q] is critical on all smooth

2-surfaces Γ in multi-time RN , w.r.t. variations of q.
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Multi-time EL equations

Consider a Lagrangian 2-form L[q] =
∑
i ,j

Lij [q] dti ∧ dtj .

Every smooth surface can be approximated arbitrarily well by stepped
surfaces.

It is su�cient to require criticality on stepped surfaces. Variations can be
taken locally, so it is su�cient to consider elementary corners.

p
ti

tj

tk
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Multi-time EL equations

for L[q] =
∑
i ,j

Lij [q] dti ∧ dtj

δijLij
δqI

= 0 ∀I ̸∋ ti , tj ,

δijLij
δqItj

=
δikLik
δqItk

∀I ̸∋ ti ,

δijLij
δqIti tj

+
δjkLjk
δqItj tk

+
δkiLki
δqItk ti

= 0 ∀I .

p
ti

tj

tk

Where
δijLij
δqI

=
∞∑
α=0

∞∑
β=0

(−1)α+β d
α

dtαi

d
β

dtβj

∂Lij
∂q

Itαi tβj
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Example: NLS equation

The NonLinear Schrödinger equation

iqt2 = −1

2
qxx + |q|2q,

is a �universal� weakly nonlinear, dispersive, energy-preserving equation,
appearing in

▶ nonlinear optics

▶ condensed matter physics

▶ �uid and plasma dynamics

▶ . . .

The NLS equations has an in�nite hierarchy of symmetries (AKNS
hierarchy). The �rst symmetry is

qt3 = −1

4
qxxx +

3

2
|q|2qx ,

where we identify t1 = x .
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Example: NLS equation

The equations

iqt2 = −1

2
qxx + |q|2q,

qt3 = −1

4
qxxx +

3

2
|q|2qx

are multi-time EL equations of a 2-form

L = L12 dt1 ∧ dt2 + L13 dt1 ∧ dt3 + L23 dt2 ∧ dt3

▶ L12, L12: Lagrange functions for the individual equations:

L12 = Im(q∗qt2) +
1

2
|qt1 |2 +

1

4
|q|4,

L13 = Im(q∗q3)−
1

4
Im(q∗t1qt1t1)−

3

4
|q|2Im(q∗qt1).

▶ L23: has no interpretation in classical variational principle.

The existence of a suitable L23 indicates that the t3-�ow is indeed a
symmetry of the NLS equation.
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Example of a Lagrangian 4-form: Maxwell equations

Consider the electromagnetic 4-potential A = (A0,A1,A2,A3) the
electromagnetic tensor

F ρσ = Aσ,ρ − Aρ,σ = ∂ρAσ − ∂σAρ

Maxwell's equations (in absence of currents)

∂ρF
ρσ = ∂ρ (∂

ρAσ − ∂σAρ) = 0

Local gauge symmetry: Aρ 7→ Aρ + ∂ρa for any function a of spacetime.

Choose a number of such functions ai .

Gauge symmetry in in�nitesimal form: ∂ iAρ = ∂ρai ⇔ Aρ,i = ai ,ρ

Goal

Construct a 4-form in space-time variables t0, t1, t2, t3 (greek indices) and
symmetry variables t4, t5, . . . (latin indices) which produces these equations.
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Example of a Lagrangian 4-form: Maxwell equations

▶ Space-time variables t0, t1, t2, t3 (greek indices)

▶ Symmetry variables t4, t5, . . . (latin indices)

▶ (π, ρ, σ, τ) even permuation of (0, 1, 2, 3)

Coe�cients of 4-form L given by

Lπρστ = L0123 =
∑
µ,ν

(
1

2
Aµ,νAµ,ν −

1

2
Aµ,νAν,µ

)
,

Lπρσi =
∑
µ

(Aµ,τ − Aτ,µ) (Aµ,i − ai ,µ) ,

Lπρji = (aj ,i − ai ,j) (A
σ,τ − Aτ,σ) ,

Lπkji = 0 Lℓkji = 0

Can take Euler-Lagrange equations wrt Aρ but also wrt gauge function ai .

There are in�nitely many possible gauge functions a

Relation to Noether's second theorem?
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Exterior derivative of L
Revisit the Kepler problem: L = L1dt1 + L2dt2 with

L1[q] =
1

2
|qt1 |2 +

1

|q|
L2[q] = qt1 · qt2 + (qt1 × q) · e (e �xed unit vector)

Multi-time Euler-Lagrange equations:

qt1t1 = − q

|q|3

qt2 = e × q

Coe�cient of dL
dL2
dt1

− dL1
dt2

=

(
qt1t1 +

q

|q|3

)
(qt2 − e × q)

General observation (also for PDEs): dL has a �double zero� on solutions.

Mats Vermeeren Lagrangians in integrable systems March 2, 2022 22 / 30



Hamiltonian formulation and dL
We can pass between the pluri-Lagrangian and Hamiltonian formalisms for
1-form and 2-forms.

Lemma (dL for 1-forms)

On solutions there holds
dLj
dti

− dLi
dtj

= {Hj ,Hi}.

It follows that:

Theorem

The Hamiltonians are in involution if and only if dL = 0 on solutions.

A similar result holds for 2-forms (and presumably for higher forms)
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Variational Symmetries and dL
Connection provided by the closedness property dL = 0:

1-forms: If d

(∑
i

Li dti

)
= 0, then

dLk
dtj

=
dLj
dtk

⇒ tj -�ow changes Lk by a tk -derivative.

⇒ ∂j

∫ b

a
dLk dtk = [Lj ]

b
a = const

⇒ �ows are variational symmetries of each other.

A similar result holds for higher forms.

Idea: use variational symmetries to construct Lagrangian form.
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Quad equations

Q(U,U1,U2,U12, λ1, λ2) = 0

▶ Subscripts of U denote lattice shifts.
▶ λ1, λ2 are parameters.
▶ Invariant under symmetries of the

square, a�ne in each of U,U1,U2,U12.

Discrete analogue of commuting �ows:

Multi-dimensional consistency

The three ways of calculating U123, using

Q(U,Ui ,Uj ,Uij , λi , λj) = 0,

and its shifts, give the same result.

Example: lattice potential KdV:

(U − U12)(U1 − U2)− λ1 + λ2 = 0

U1

U12U2

U

λ1

λ2

U1

U13

U3

U

U12

U123U23

U2

λ1

λ2

λ3

U1

U13

U3

U

U12

U123U23

U2

λ1

λ2

λ3

U1

U13

U3

U

U12

U123U23

U2

λ1

λ2

λ3
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Variational principle for quad equations

For some discrete 2-form

L(□ij) = L(U,Ui ,Uj ,Uij , λi , λj),

the action
∑
□∈Γ

L(□) is critical on all 2-surfaces Γ in ZN simultaneously.

The discrete and continuous variational principles are essentially the same.
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Semi-discrete systems

Consider particles on a line: 1 discrete dimension, many continuous times

· · · q̄ q q · · ·

Toda lattice: exponential nearest-neighbour interaction

q11 = exp(q̄ − q)− exp(q − q).

Part of a hierarchy. First symmetry:

q2 = q21 + exp(q̄ − q) + exp(q − q)

(Subscripts stand for partial derivatives: q1 = q − t1 etc.)
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Toda lattice

Lagrangians (�0� for discrete direction)

L01 =
1

2
q21 − exp(q̄ − q)

L02 = q1q2 −
1

3
q31 − (q1 + q̄1) exp(q̄ − q)

L12 = −1

4

(
q2 − q11 − q21

)2
Euler-Lagrange equations:

δ01L01
δq

= 0 → q11 = exp(q̄ − q)− exp(q − q)

δ02L02
δq1

= 0 → q2 = q21 + exp(q̄ − q) + exp(q − q)

δ12L12
δq

= 0 → 1

2
q22 − q11q2 − 2q12q1 −

1

2
q1111 + 3q21q11 = 0

Lagrangian formalism produces a non-trivial PDE at a single lattice site.
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Summary

▶ The pluri-Lagrangian (or Lagrangian multiform) principle describes
symmetries and integrability.

Applies to ODEs and PDEs, discrete and continuous.

▶ Closedness of the Lagrangian form, i.e. dL = 0, is related to
variational symmetries (Noether) and Hamiltonians in involution.

▶ Construction of Lagrangian 1- and 2-forms can be done using:
▶ Variational symmetries

▶ Hamiltonian structures

▶ Continuum limits, Lax pairs, . . .

▶ Some open questions:
▶ Full development for semi-discrete systems

▶ Better understanding of application to gauge theory
(∞-dim symmetry groups → Noether's second theorem)

▶ Application to quantum integrable systems, path integrals, . . .
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Thank you for your attention!
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