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Integrable systems
Most nonlinear differential equations are impossible to solve explicitly.
Integrable systems are the exception. They have some underlying structure
which helps us.
Often, this structure consists of a number of symmetries:

An equation is integrable if has sufficiently many symmetries.

Each symmetry, in it infinitesimal form, defines a differential equation.
Hence:

An equation is integrable if it is part of a sufficiently large family of
compatible equations.

A common interpretation of “compatible” is given in terms of Hamiltonian
mechanics.
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Hamiltonian mechanics

Hamilton function

H : R2N ∼= T ∗Q → R :

(q, p) 7→ H(q, p)

Typically

H(q, p) =
1
2m

p2 + U(q)

Dynamics given by

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi

Flow consists of symplectic maps
and preserves H.

Poisson bracket of two functions
on T ∗Q:

{f , g} =
N∑
i=1

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
Dynamics of a Hamiltonian
system:

q̇i = {H, qi},
ṗi = {H, pi},
d
dt

f (q, p) = {H, f }.

In particular: f is conserved if and
only if {H, f } = 0.
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Liouville-Arnold integrability
A Hamiltonian system with Hamilton function H : R2N → R is Liouville
integrable if there exist N functionally independent Hamilton functions
H = H1,H2, . . .HN such that {Hi ,Hj} = 0.

I Each Hi defines its own flow: N dynamical systems.
I Each Hi is a conserved quantity for all flows.
I Joint dynamics stay on {Hi = const}. If compact, this is a torus.

Example: central force in the plane:

I Dynamics on these tori are linear in action-angle variables.
I The flows commute: φtHi

◦ φsHj
= φsHj

◦ φtHi
.
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Two commuting flows
Let z = (q, p). Consider two Hamiltonian ODEs

df (z)

dt1
= {f (z),H1(z)}

df (z)

dt2
= {f (z),H2(z)}

with {H1,H2} = 0

The flows commute, meaning that evolution can be parameterised by the
(t1, t2) plane, called multi-time.

t1

t2

•
Initial condition

z(0, 0)

• z(t1, t2) independent
of path through
multi-time

Additional commuting equations can be accommodated by increasing the
dimension of multi-time: Rn instead of R2.
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Lagrangian mechanics
Lagrange function L : TQ ∼= R2N → R : (q, qt) 7→ L(q, qt)

Dynamics follows curves which are minimizers (critical points) of the action∫ b

a
L(q, qt) dt with fixed boundary values q(a) and q(b).

Minimizers satisfy the Euler-Lagrange (EL) equation
∂L

∂q
− d

dt
∂L

∂qt
= 0

Proof. Consider an arbitrary variation δq:

δ

∫ b

a
L dt =

∫ b

a

(
∂L

∂q
δq +

∂L

∂qt
δqt

)
dt

Integration by parts yields

δ

∫ b

a
L dt =

∫ b

a

(
∂L

∂q
− d

dt
∂L

∂qt

)
δq dt +

[
∂L

∂qt
δq

]b
a

EL follows because δq(a) = δq(b) = 0 and δq is arbitrary inside (a, b). �
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Lagrangian formulation of Liouville integrable system
On the Hamiltonian side, commutativity is implied by {Hi ,Hj} = 0.

What about the Lagrangian side?
Suppose we have Lagrange functions Li associated to Hi .

Variational (“Pluri-Lagrangian”/”Lagrangian multiform”) principle
Combine the Li into a 1-form

L[q] =
N∑
i=1

Li [q] dti .

Look for dynamical variables q(t1, . . . , tN)
such that the action

IS =

∫
S
L[q]

is critical w.r.t. variations of q, simultaneously
over every curve S in multi-time RN

t1

t2

IS =
∫
L1 dt1

IS =
∫
L2 dt2
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Multi-time Euler-Lagrange equations
Assume that

L1[q] = L1(q, qt1),

Li [q] = Li (q, qt1 , qti ), i 6= 1

The multi-time Euler-Lagrange equations for L =
∑
i

Li [q] dti are

Usual Euler-Lagrange equations:
∂Li
∂q
− d

dti
∂Li
∂qti

= 0

Usual EL wrt to alien derivatives:
∂Li
∂qt1
− d

dti
∂Li
∂qt1ti

= 0, i 6= 1

Additional conditions:
∂Li
∂qti

=
∂Lj
∂qtj
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Example: Kepler Problem
The classical Lagrangian

L1[q] =
1
2
|qt1 |2 +

1
|q|

can be combined with

L2[q] = qt1 · qt2 + (qt1 × q) · e (e fixed unit vector)

into a Lagrangian 1-form L = L1dt1 + L2dt2.
Multi-time Euler-Lagrange equations:

∂L1

∂q
− d

dt1
∂L1

∂qt1
= 0 ⇒ qt1t1 = − q

|q|3
(Keplerian motion)

∂L2

∂q
− d

dt2
∂L2

∂qt2
= 0 ⇒ qt1t2 = e × qt1

∂L2

∂qt1
= 0 ⇒ qt2 = e × q (Rotation)

∂L1

∂qt1
=
∂L2

∂qt2
⇒ qt1 = qt1

This 1-form captures just one symmetry. There are more symmetries which
make the Kepler system (super-)integrable.
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Derivation of the multi-time Euler-Lagrange equations

Consider a Lagrangian one-form L =
∑
i

Li [q] dti , with

L1[q] = L1(q, qt1),

Li [q] = Li (q, qt1 , qti ), i 6= 1

Lemma
If the action

∫
S L is critical on all stepped curves S

in RN , then it is critical on all smooth curves.

Variations are local, so it is sufficient to look at an
L-shaped curve S = Si ∪ Sj .

ti

tj

Si

Sj

C
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Derivation of the multi-time Euler-Lagrange equations

On one of the straight pieces, Si (i 6= 1), we get

δ

∫
Si

Li dti =

∫
Si

(
∂Li
∂q

δq +
∂Li
∂qt1

δqt1 +
∂Li
∂qti

δqti

)
dti

Integration by parts (wrt ti only) yields ti

tj

Si

Sj

C

δ

∫
Si

Li dti =

∫
Si

((
∂Li
∂q
− d

dti
∂Li
∂qti

)
δq +

∂Li
∂qt1

δqt1

)
dti +

∂Li
∂qti

δq

∣∣∣∣
C

Since p is an interior point of the curve, we cannot set δq(C ) = 0!

Arbitrary δq and δqt1 , so we find:

Multi-time Euler-Lagrange equations

∂Li
∂q
− d

dti
∂Li
∂qti

= 0,
∂Li
∂qt1
− d

dti
∂Li
∂qt1ti

= 0,
∂Li
∂qti

=
∂Lj
∂qtj
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Higher order Lagranigans Li [q] = Li(q, qti , qti tj , . . .)

For a string I = ti1 . . . tik of time variables, denote the corresponding
derivative by qI .
If I is empty then qI = q.

Denote by
δi
δqI

the variational derivative in the direction of ti wrt qI :

δiLi
δqI

=
∞∑
α=0

(−1)α
dα

dtαi

∂Li
∂qItαi

=
∂Li
∂qI
− d

dti
∂Li
∂qIti

+
d2

dt2i

∂Li
∂qIt2i

− . . .

Multi-time Euler-Lagrange equations

Usual Euler-Lagrange equations:
δiLi
δqI

= 0 ∀I 63 ti ,

Additional conditions:
δiLi
δqIti

=
δjLj
δqItj

∀I ,
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Variational principle for PDEs (d = 2)

Pluri-Lagrangian principle
Given a 2-form

L[q] =
∑

i ,j Lij [q] dti ∧ dtj ,

find a field q : RN → R, such that
∫
S
L[q] is critical on all smooth surfaces

S in multi-time RN , w.r.t. variations of q.
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Multi-time EL equations
for L[q] =

∑
i ,j

Lij [q] dti ∧ dtj

δijLij
δqI

= 0 ∀I 63 ti , tj ,

δijLij
δqItj

=
δikLik
δqItk

∀I 63 ti ,

δijLij
δqIti tj

+
δjkLjk
δqItj tk

+
δkiLki
δqItk ti

= 0 ∀I .

Where
δijLij
δqI

=
∞∑
α=0

∞∑
β=0

(−1)α+β dα

dtαi

dβ

dtβj

∂Lij
∂q

Itαi tβj
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Example: Potential KdV hierarchy
(Notation: u instead of q for the dependent variable)
ut2 = Q2 = uxxx + 3u2

x ,

ut3 = Q3 = uxxxxx + 10uxuxxx + 5u2
xx + 10u3

x ,

where we identify t1 = x .
The differentiated equations uxti = d

dxQi are Lagrangian with

L12 =
1
2
uxut2 −

1
2
uxuxxx − u3

x ,

L13 =
1
2
uxut3 −

1
2
u2
xxx + 5uxu2

xx −
5
2
u4
x .

A suitable coefficient L23 of

L = L12 dt1 ∧ dt2 + L13 dt1 ∧ dt3 + L23 dt2 ∧ dt3

can be found (nontrivial task!) in the form

L23 =
1
2

(ut3Q2 − ut2Q3) + p23.

Mats Vermeeren A variational principle for integrable systems, symmetries, and discretisationMay 18, 2022 15 / 27



Example: Potential KdV hierarchy

I The equations
δ12L12

δu
= 0 and

δ13L13

δu
= 0 yield

uxt2 =
d
dx

Q2 and uxt3 =
d
dx

Q3.

I The equations
δ12L12

δux
=
δ32L32

δut3
and

δ13L13

δux
=
δ23L23

δut2
yield

ut2 = Q2 and ut3 = Q3,

the evolutionary equations!
I All other multi-time EL equations are consequences of these.
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Exterior derivative of L
Revisit the Kepler problem: L = L1dt1 + L2dt2 with

L1[q] =
1
2
|qt1 |2 +

1
|q|

L2[q] = qt1 · qt2 + (qt1 × q) · e (e fixed unit vector)

Multi-time Euler-Lagrange equations:

qt1t1 = − q

|q|3

qt2 = e × q

Coefficient of dL
dL2

dt1
− dL1

dt2
=

(
qt1t1 +

q

|q|3

)
(qt2 − e × q)

Observation (also for PDEs): dL often has a “double zero” on solutions.

dL = 0 sets a Lagrangian multiform apart from a pluri-Lagrangian system.
Mats Vermeeren A variational principle for integrable systems, symmetries, and discretisationMay 18, 2022 17 / 27



Interpretation of closedness condition
If dL = 0, then the action is invariant wrt variations in geometry

Deforming the curve (surface) of integration leaves action invariant.

t1

t2

•

•

S1

S2

D

∫
S1

L −
∫
S2

L =

∫
D

dL = 0

Recall: in the “pluri-Lagrangian” variational principle, we only took
variations of the dependent variable q, not of the curve through multi-time.
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Hamiltonian formulation and dL
We can pass between the pluri-Lagrangian and Hamiltonian formalisms for
1-form and 2-forms.

Lemma (dL for 1-forms)

On solutions there holds
dLj
dti
− dLi

dtj
= {Hj ,Hi}.

It follows that:

Theorem
The Hamiltonians are in involution if and only if dL = 0 on solutions.

A similar result holds for 2-forms (and presumably for higher forms)
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Variational Symmetries and dL
dL = 0 expresses that flows are variational symmetries of each other

d

(∑
i

Li dti

)
= 0⇒ dLk

dtj
=

dLj
dtk

⇒ tj -flow changes Lk by a tk -derivative

⇒ ∂j

∫ b

a
Lk dtk =

∫ b

a

dLj
dtk

dtk = [Lj ]
b
a = const

Adding a constant to the action does not change the dynamics, hence ∂j is
a variational symmetry.

A similar result holds for higher forms.

We can use variational symmetries to construct Lagrangian multiforms.
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Non-abelian symmetry groups
Not all symmetries commute with each other.
In the Kepler problem, the vector fields generating rotations satisfy

[∂1, ∂2] = −∂3, [∂2, ∂3] = −∂1 [∂3, ∂1] = −∂2.

Even if a system is integrable (and especially if it is “super-integreable”) the
commuting Hamiltonian vector fields do not capture the symmetries in full.

Multiforms on Lie groups
If a system has symmetry group G , we can use the Lie group R× G as
multi-time.

Now dL = 0 relates the Poisson brackets to the Lie algebra of G .

In the special case where G = RN , this implies our earlier observation that
dL = 0 ⇐⇒ {Hi ,Hj} = 0.

Multiforms are not just a tool in integrability, but a unified desciption of a
system and its symmetries in general.
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Quad equations

Q(U,U1,U2,U12, λ1, λ2) = 0

I Subscripts of U denote lattice shifts.
I λ1, λ2 are parameters.
I Invariant under symmetries of the

square, affine in each of U,U1,U2,U12.

Discrete analogue of commuting flows:

Multi-dimensional consistency
The three ways of calculating U123, using

Q(U,Ui ,Uj ,Uij , λi , λj) = 0,

and its shifts, give the same result.

Example: lattice potential KdV:

(U − U12)(U1 − U2)− λ1 + λ2 = 0

U1

U12U2

U

λ1

λ2

U1

U13

U3

U

U12

U123U23

U2

λ1

λ2

λ3

U1

U13

U3

U

U12

U123U23

U2

λ1

λ2

λ3

U1

U13

U3

U

U12

U123U23

U2

λ1

λ2

λ3
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Variational principle for quad equations

For some discrete 2-form

L(�ij) = L(U,Ui ,Uj ,Uij , λi , λj),

the action
∑
�∈Γ

L(�) is critical on all 2-surfaces Γ in ZN simultaneously.

The discrete and continuous variational principles are the same.
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Semi-discrete systems
Consider particles on a line: 1 discrete dimension, many continuous times

· · · q̄ q q · · ·

Denote q1 = qt1 = dq
dt1 , q11 = qt1t1 = d2q

dt21
, etc.

Toda lattice: exponential nearest-neighbour interaction

q11 = exp(q̄ − q)− exp(q − q).

Part of a hierarchy. First symmetry:

q2 = q2
1 + exp(q̄ − q) + exp(q − q)
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Toda lattice
Lagrangians (“0” for discrete direction)

L01 =
1
2
q2
1 − exp(q̄ − q)

L02 = q1q2 −
1
3
q3
1 − (q1 + q̄1) exp(q̄ − q)

L12 = −1
4
(
q2 − q11 − q2

1
)2

Euler-Lagrange equations:

δ01L01

δq
= 0 → q11 = exp(q̄ − q)− exp(q − q)

δ02L02

δq1
= 0 → q2 = q2

1 + exp(q̄ − q) + exp(q − q)

δ12L12

δq
= 0 → 1

2
q22 − q11q2 − 2q12q1 −

1
2
q1111 + 3q2

1q11 = 0

Lagrangian formalism produces a non-trivial PDE at a single lattice site.
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Summary
I The Lagrangian multiform (or pluri-Lagrangian) principle describes

symmetries and integrability.
Applies to ODEs and PDEs, discrete and continuous.

I Closedness of the Lagrangian form, i.e. dL = 0, is related to
variational symmetries (Noether) and Poisson brackets.

I Some open questions:
I Multiforms as a tool for construction solutions.
I Full development for semi-discrete systems

Semi-discrete multiforms in geometric numerical integration?
Geometric integrators are discrete maps with continuous symmetries.

I Better understanding of application to gauge theory
(∞-dim symmetry groups → Noether’s second theorem)

I Application to quantum integrable systems, path integrals, . . .
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Thank you for your attention!
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