

A variational principle for integrable systems, symmetries, and discretisation

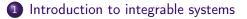
Mats Vermeeren

Floris Takens Seminar

Groningen

May 18, 2022

Contents



2 Pluri-Lagrangian systems / Lagrangian multiforms

- Lagrangian 1-forms \rightarrow integrable ODEs
- Lagrangian 2-forms \rightarrow integrable PDEs
- Connections to Hamiltonian structures and variational symmetries

3 Lattice equations: discrete and semi-discrete systems

4 Summary and outlook

Contents

1 Introduction to integrable systems

Pluri-Lagrangian systems / Lagrangian multiforms

- ullet Lagrangian 1-forms ightarrow integrable ODEs
- Lagrangian 2-forms \rightarrow integrable PDEs
- Connections to Hamiltonian structures and variational symmetries

Lattice equations: discrete and semi-discrete systems

Summary and outlook

Integrable systems

Most nonlinear differential equations are impossible to solve explicitly.

Integrable systems are the exception. They have some underlying structure which helps us.

Often, this structure consists of a number of symmetries:

An equation is integrable if has sufficiently many symmetries.

Each symmetry, in it infinitesimal form, defines a differential equation. Hence:

An equation is integrable if it is part of a sufficiently large family of compatible equations.

A common interpretation of "compatible" is given in terms of Hamiltonian mechanics.

Hamiltonian mechanics

Hamilton function

$$egin{aligned} & \mathcal{H}:\mathbb{R}^{2N}\cong \mathcal{T}^*Q o\mathbb{R}:\ & (q,p)\mapsto \mathcal{H}(q,p) \end{aligned}$$

Typically

$$H(q,p)=\frac{1}{2m}p^2+U(q)$$

Dynamics given by

$$\dot{q}_i = rac{\partial H}{\partial p_i}, \qquad \dot{p}_i = -rac{\partial H}{\partial q_i}$$

Flow consists of symplectic maps and preserves *H*.

Poisson bracket of two functions on T^*Q :

$$\{f,g\} = \sum_{i=1}^{N} \left(\frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} - \frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} \right)$$

Dynamics of a Hamiltonian system:

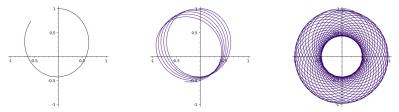
$$\begin{aligned} \dot{q}_i &= \{H, q_i\},\\ \dot{p}_i &= \{H, p_i\},\\ \frac{\mathrm{d}}{\mathrm{d}t}f(q, p) &= \{H, f\}. \end{aligned}$$

In particular: f is conserved if and only if $\{H, f\} = 0$.

Liouville-Arnold integrability

A Hamiltonian system with Hamilton function $H : \mathbb{R}^{2N} \to \mathbb{R}$ is Liouville integrable if there exist N functionally independent Hamilton functions $H = H_1, H_2, \ldots H_N$ such that $\{H_i, H_j\} = 0$.

- Each *H_i* defines its own flow: *N* dynamical systems.
- Each H_i is a conserved quantity for all flows.
- Joint dynamics stay on {*H_i* = const}. If compact, this is a torus.
 Example: central force in the plane:



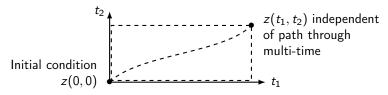
Dynamics on these tori are linear in action-angle variables.

• The flows commute: $\phi_{H_i}^t \circ \phi_{H_i}^s = \phi_{H_i}^s \circ \phi_{H_i}^t$.

Two commuting flows

Let z = (q, p). Consider two Hamiltonian ODEs $\frac{\mathrm{d}f(z)}{\mathrm{d}t_1} = \{f(z), H_1(z)\}$ with $\{H_1, H_2\} = 0$ $\frac{\mathrm{d}f(z)}{\mathrm{d}t_2} = \{f(z), H_2(z)\}$

The flows commute, meaning that evolution can be parameterised by the (t_1, t_2) plane, called multi-time.



Additional commuting equations can be accommodated by increasing the dimension of multi-time: \mathbb{R}^n instead of \mathbb{R}^2 .

Lagrangian mechanics

Lagrange function $L: TQ \cong \mathbb{R}^{2N} \to \mathbb{R}: (q, q_t) \mapsto L(q, q_t)$

Dynamics follows curves which are minimizers (critical points) of the action

 $\int_{a}^{b} L(q, q_t) dt \quad \text{with fixed boundary values } q(a) \text{ and } q(b).$

Minimizers satisfy the Euler-Lagrange (EL) equation $\frac{\partial A}{\partial A}$

 $\frac{\partial L}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial q_t} = 0$

Proof. Consider an arbitrary variation δq :

$$\delta \int_{a}^{b} L \, \mathrm{d}t = \int_{a}^{b} \left(\frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial q_{t}} \delta q_{t} \right) \mathrm{d}t$$

Integration by parts yields

$$\delta \int_{a}^{b} L \,\mathrm{d}t = \int_{a}^{b} \left(\frac{\partial L}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial q_{t}} \right) \delta q \,\mathrm{d}t + \left[\frac{\partial L}{\partial q_{t}} \delta q \right]_{a}^{b}$$

EL follows because $\delta q(a) = \delta q(b) = 0$ and δq is arbitrary inside (a, b).

Contents

Introduction to integrable systems

Pluri-Lagrangian systems / Lagrangian multiforms

- Lagrangian 1-forms \rightarrow integrable ODEs
- Lagrangian 2-forms \rightarrow integrable PDEs
- Connections to Hamiltonian structures and variational symmetries

Lattice equations: discrete and semi-discrete systems

4 Summary and outlook

Lagrangian formulation of Liouville integrable system

On the Hamiltonian side, commutativity is implied by $\{H_i, H_j\} = 0$.

What about the Lagrangian side?

Suppose we have Lagrange functions L_i associated to H_i .

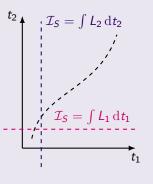
Variational ("Pluri-Lagrangian"/"Lagrangian multiform") principle Combine the L_i into a 1-form

$$\mathcal{L}[q] = \sum_{i=1}^{N} L_i[q] \,\mathrm{d}t_i.$$

Look for dynamical variables $q(t_1,\ldots,t_N)$ such that the action

$$\mathcal{I}_S = \int_S \mathcal{L}[q]$$

is critical w.r.t. variations of q, simultaneously over every curve S in multi-time \mathbb{R}^N



Multi-time Euler-Lagrange equations

Assume that

$$L_1[q] = L_1(q, q_{t_1}),$$

 $L_i[q] = L_i(q, q_{t_1}, q_{t_i}), \quad i \neq 1$

The multi-time Euler-Lagrange equations for $\mathcal{L} = \sum_i L_i[q] dt_i$ are

Usual Euler-Lagrange equations:

Usual EL wrt to alien derivatives:

Additional conditions:

$$\begin{aligned} \frac{\partial L_i}{\partial q} &- \frac{\mathrm{d}}{\mathrm{d}t_i} \frac{\partial L_i}{\partial q_{t_i}} = 0\\ \frac{\partial L_i}{\partial q_{t_1}} &- \frac{\mathrm{d}}{\mathrm{d}t_i} \frac{\partial L_i}{\partial q_{t_1 t_i}} = 0, \quad i \neq 1\\ \frac{\partial L_i}{\partial q_{t_i}} &= \frac{\partial L_j}{\partial q_{t_i}} \end{aligned}$$

Example: Kepler Problem

The classical Lagrangian

$$L_1[q] = \frac{1}{2}|q_{t_1}|^2 + \frac{1}{|q|}$$

can be combined with

 $L_2[q] = q_{t_1} \cdot q_{t_2} + (q_{t_1} imes q) \cdot e$ (e fixed unit vector)

into a Lagrangian 1-form $\mathcal{L} = L_1 dt_1 + L_2 dt_2$. Multi-time Euler-Lagrange equations:

$$\begin{aligned} \frac{\partial L_1}{\partial q} &- \frac{\mathrm{d}}{\mathrm{d}t_1} \frac{\partial L_1}{\partial q_{t_1}} = 0 \quad \Rightarrow \quad q_{t_1t_1} = -\frac{q}{|q|^3} \quad \text{(Keplerian motion)} \\ \frac{\partial L_2}{\partial q} &- \frac{\mathrm{d}}{\mathrm{d}t_2} \frac{\partial L_2}{\partial q_{t_2}} = 0 \quad \Rightarrow \quad q_{t_1t_2} = e \times q_{t_1} \\ \frac{\partial L_2}{\partial q_{t_1}} = 0 \quad \Rightarrow \quad q_{t_2} = e \times q \quad \text{(Rotation)} \\ \frac{\partial L_1}{\partial q_{t_1}} &= \frac{\partial L_2}{\partial q_{t_2}} \quad \Rightarrow \quad q_{t_1} = q_{t_1} \end{aligned}$$

Mats Vermeeren

A variational principle for integrable syste

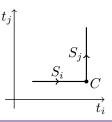
Derivation of the multi-time Euler-Lagrange equations

Consider a Lagrangian one-form $\mathcal{L} = \sum_{i} L_i[q] dt_i$, with $L_1[q] = L_1(q, q_{t_1}),$ $L_i[q] = L_i(q, q_{t_1}, q_{t_i}), \quad i \neq 1$

Lemma

If the action $\int_{S} \mathcal{L}$ is critical on all stepped curves S in \mathbb{R}^{N} , then it is critical on all smooth curves.

Variations are local, so it is sufficient to look at an L-shaped curve $S = S_i \cup S_j$.



Derivation of the multi-time Euler-Lagrange equations

On one of the straight pieces, S_i ($i \neq 1$), we get

$$\delta \int_{S_i} L_i \, \mathrm{d}t_i = \int_{S_i} \left(\frac{\partial L_i}{\partial q} \delta q + \frac{\partial L_i}{\partial q_{t_1}} \delta q_{t_1} + \frac{\partial L_i}{\partial q_{t_i}} \delta q_{t_i} \right) \mathrm{d}t_i$$

Integration by parts (wrt t_i only) yields

$$\delta \int_{S_i} L_i \, \mathrm{d}t_i = \int_{S_i} \left(\left(\frac{\partial L_i}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t_i} \frac{\partial L_i}{\partial q_{t_i}} \right) \delta q + \frac{\partial L_i}{\partial q_{t_1}} \delta q_{t_1} \right) \mathrm{d}t_i + \frac{\partial L_i}{\partial q_{t_i}} \delta q \Big|_C$$

Since *p* is an interior point of the curve, we cannot set $\delta q(C) = 0!$

Arbitrary δq and δq_{t_1} , so we find:

Multi-time Euler-Lagrange equations $\frac{\partial L_i}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t_i} \frac{\partial L_i}{\partial q_{t_i}} = 0, \qquad \frac{\partial L_i}{\partial q_{t_1}} - \frac{\mathrm{d}}{\mathrm{d}t_i} \frac{\partial L_i}{\partial q_{t_1 t_i}} = 0, \qquad \frac{\partial L_i}{\partial q_{t_i}} = \frac{\partial L_j}{\partial q_{t_j}}$

 t_j

Higher order Lagranigans $L_i[q] = L_i(q, q_{t_i}, q_{t_it_j}, \ldots)$

For a string $I = t_{i_1} \dots t_{i_k}$ of time variables, denote the corresponding derivative by q_I .

If *I* is empty then $q_I = q$.

Denote by $\frac{\delta_i}{\delta q_I}$ the variational derivative in the direction of t_i wrt q_I : $\frac{\delta_i L_i}{\delta q_I} = \sum_{\alpha=0}^{\infty} (-1)^{\alpha} \frac{\mathrm{d}^{\alpha}}{\mathrm{d}t_i^{\alpha}} \frac{\partial L_i}{\partial q_{lt_i^{\alpha}}}$ $= \frac{\partial L_i}{\partial q_I} - \frac{\mathrm{d}}{\mathrm{d}t_i} \frac{\partial L_i}{\partial q_{lt_i}} + \frac{\mathrm{d}^2}{\mathrm{d}t_i^2} \frac{\partial L_i}{\partial q_{lt_i^2}} - \dots$

Multi-time Euler-Lagrange equations

Usual Euler-Lagrange equations:

Additional conditions:

$$\frac{\delta_i L_i}{\delta q_l} = 0 \qquad \forall l \not\ni t_i,$$
$$\frac{\delta_i L_i}{\delta q_{lt_i}} = \frac{\delta_j L_j}{\delta q_{lt_i}} \qquad \forall l,$$

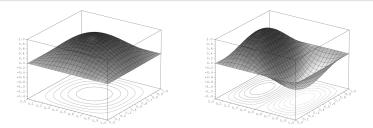
Variational principle for PDEs (d = 2)

Pluri-Lagrangian principle

Given a 2-form

$$\mathcal{L}[q] = \sum_{i,j} L_{ij}[q] \,\mathrm{d}t_i \wedge \mathrm{d}t_j,$$

find a field $q : \mathbb{R}^N \to \mathbb{R}$, such that $\int_{S} \mathcal{L}[q]$ is critical on all smooth surfaces S in multi-time \mathbb{R}^N , w.r.t. variations of q.



Multi-time EL equations

for
$$\mathcal{L}[q] = \sum_{i,j} L_{ij}[q] \, \mathrm{d} t_i \wedge \mathrm{d} t_j$$

$$\frac{\delta_{ij}L_{ij}}{\delta q_{l}} = 0 \qquad \forall I \not\supseteq t_{i}, t_{j}, \\
\frac{\delta_{ij}L_{ij}}{\delta q_{lt_{j}}} = \frac{\delta_{ik}L_{ik}}{\delta q_{lt_{k}}} \qquad \forall I \not\supseteq t_{i}, \\
\frac{\delta_{ij}L_{ij}}{\delta q_{lt_{i}t_{j}}} + \frac{\delta_{jk}L_{jk}}{\delta q_{lt_{j}t_{k}}} + \frac{\delta_{ki}L_{ki}}{\delta q_{lt_{k}t_{i}}} = 0 \qquad \forall I.$$

Where

$$\frac{\delta_{ij}L_{ij}}{\delta q_I} = \sum_{\alpha=0}^{\infty} \sum_{\beta=0}^{\infty} (-1)^{\alpha+\beta} \frac{\mathrm{d}^{\alpha}}{\mathrm{d}t_i^{\alpha}} \frac{\mathrm{d}^{\beta}}{\mathrm{d}t_j^{\beta}} \frac{\partial L_{ij}}{\partial q_{It_i^{\alpha}t_j^{\beta}}}$$

Example: Potential KdV hierarchy

(Notation: *u* instead of *q* for the dependent variable) $u_{t_2} = Q_2 = u_{xxx} + 3u_x^2$, $u_{t_3} = Q_3 = u_{xxxxx} + 10u_xu_{xxx} + 5u_{xx}^2 + 10u_x^3$, where we identify $t_1 = x$.

The differentiated equations $u_{xt_i} = rac{\mathrm{d}}{\mathrm{d}x} Q_i$ are Lagrangian with

$$L_{12} = \frac{1}{2}u_{x}u_{t_{2}} - \frac{1}{2}u_{x}u_{xxx} - u_{x}^{3},$$

$$L_{13} = \frac{1}{2}u_{x}u_{t_{3}} - \frac{1}{2}u_{xxx}^{2} + 5u_{x}u_{xx}^{2} - \frac{5}{2}u_{x}^{4}$$

A suitable coefficient L_{23} of

$$\mathcal{L} = \mathcal{L}_{12} \,\mathrm{d}t_1 \wedge \mathrm{d}t_2 + \mathcal{L}_{13} \,\mathrm{d}t_1 \wedge \mathrm{d}t_3 + \mathcal{L}_{23} \,\mathrm{d}t_2 \wedge \mathrm{d}t_3$$

can be found (nontrivial task!) in the form

$$L_{23} = \frac{1}{2}(u_{t_3}Q_2 - u_{t_2}Q_3) + p_{23}.$$

Example: Potential KdV hierarchy

• The equations
$$\frac{\delta_{12}L_{12}}{\delta u} = 0$$
 and $\frac{\delta_{13}L_{13}}{\delta u} = 0$ yield
 $u_{xt_2} = \frac{d}{dx}Q_2$ and $u_{xt_3} = \frac{d}{dx}Q_3$.
• The equations $\frac{\delta_{12}L_{12}}{\delta u_x} = \frac{\delta_{32}L_{32}}{\delta u_{t_3}}$ and $\frac{\delta_{13}L_{13}}{\delta u_x} = \frac{\delta_{23}L_{23}}{\delta u_{t_2}}$ yield
 $u_{t_2} = Q_2$ and $u_{t_3} = Q_3$,

the evolutionary equations!

All other multi-time EL equations are consequences of these.

Exterior derivative of $\boldsymbol{\mathcal{L}}$

Revisit the Kepler problem: $\mathcal{L} = L_1 dt_1 + L_2 dt_2$ with

$$egin{aligned} & L_1[q] = rac{1}{2} |q_{t_1}|^2 + rac{1}{|q|} \ & L_2[q] = q_{t_1} \cdot q_{t_2} + (q_{t_1} imes q) \cdot e \ & (e \ ext{fixed unit vector}) \end{aligned}$$

Multi-time Euler-Lagrange equations:

$$q_{t_1t_1} = -rac{q}{|q|^3}$$

 $q_{t_2} = e imes q$

Coefficient of $\mathrm{d}\mathcal{L}$

$$\frac{\mathrm{d}L_2}{\mathrm{d}t_1} - \frac{\mathrm{d}L_1}{\mathrm{d}t_2} = \left(q_{t_1t_1} + \frac{q}{|q|^3}\right)(q_{t_2} - e \times q)$$

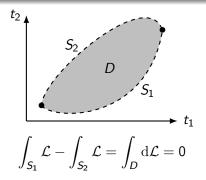
Observation (also for PDEs): $d\mathcal{L}$ often has a "double zero" on solutions.

 $d\mathcal{L} = 0$ sets a Lagrangian multiform apart from a pluri-Lagrangian system. Mats Vermeeren A variational principle for integrable syste May 18, 2022 17/27

Interpretation of closedness condition

If $\mathrm{d}\mathcal{L}=0,$ then the action is invariant wrt variations in geometry

Deforming the curve (surface) of integration leaves action invariant.



Recall: in the "pluri-Lagrangian" variational principle, we only took variations of the dependent variable q, not of the curve through multi-time.

Hamiltonian formulation and $\mathrm{d}\mathcal{L}$

We can pass between the pluri-Lagrangian and Hamiltonian formalisms for 1-form and 2-forms.

Lemma ($d\mathcal{L}$ for 1-forms)

On solutions there holds
$$\frac{\mathrm{d}L_j}{\mathrm{d}t_i} - \frac{\mathrm{d}L_i}{\mathrm{d}t_j} = \{H_j, H_i\}.$$

It follows that:

Theorem

The Hamiltonians are in involution if and only if $\mathrm{d}\mathcal{L}=0$ on solutions.

A similar result holds for 2-forms (and presumably for higher forms)

Variational Symmetries and $\mathrm{d}\mathcal{L}$

 $\mathrm{d}\mathcal{L}=0$ expresses that flows are variational symmetries of each other

$$d\left(\sum_{i} L_{i} dt_{i}\right) = 0 \Rightarrow \frac{dL_{k}}{dt_{j}} = \frac{dL_{j}}{dt_{k}}$$
$$\Rightarrow t_{j}\text{-flow changes } L_{k} \text{ by a } t_{k}\text{-derivative}$$
$$\Rightarrow \partial_{j} \int_{a}^{b} L_{k} dt_{k} = \int_{a}^{b} \frac{dL_{j}}{dt_{k}} dt_{k} = [L_{j}]_{a}^{b} = \text{const}$$

Adding a constant to the action does not change the dynamics, hence ∂_j is a variational symmetry.

A similar result holds for higher forms.

We can use variational symmetries to construct Lagrangian multiforms.

Non-abelian symmetry groups

Not all symmetries commute with each other.

In the Kepler problem, the vector fields generating rotations satisfy

$$[\partial_1, \partial_2] = -\partial_3, \qquad [\partial_2, \partial_3] = -\partial_1 \qquad [\partial_3, \partial_1] = -\partial_2.$$

Even if a system is integrable (and especially if it is "super-integreable") the commuting Hamiltonian vector fields do not capture the symmetries in full.

Multiforms on Lie groups

If a system has symmetry group G, we can use the Lie group $\mathbb{R} \times G$ as multi-time.

Now $d\mathcal{L} = 0$ relates the Poisson brackets to the Lie algebra of G.

In the special case where $G = \mathbb{R}^N$, this implies our earlier observation that $d\mathcal{L} = 0 \iff \{H_i, H_j\} = 0.$

Multiforms are not just a tool in integrability, but a unified desciption of a system and its symmetries in general.

Mats Vermeeren

Contents

Introduction to integrable systems

2 Pluri-Lagrangian systems / Lagrangian multiforms

- Lagrangian 1-forms \rightarrow integrable ODEs
- Lagrangian 2-forms \rightarrow integrable PDEs
- Connections to Hamiltonian structures and variational symmetries

3 Lattice equations: discrete and semi-discrete systems

Summary and outlook

Quad equations

 $\mathcal{Q}(U, U_1, U_2, U_{12}, \lambda_1, \lambda_2) = 0$

- Subscripts of U denote lattice shifts.
- λ_1, λ_2 are parameters.
- Invariant under symmetries of the square, affine in each of U, U₁, U₂, U₁₂.

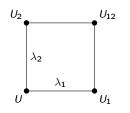
Discrete analogue of commuting flows:

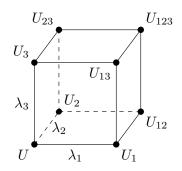
Multi-dimensional consistency The three ways of calculating U_{123} , using $Q(U, U_i, U_j, U_{ij}, \lambda_i, \lambda_j) = 0$,

and its shifts, give the same result.

Example: lattice potential KdV:

$$(U - U_{12})(U_1 - U_2) - \lambda_1 + \lambda_2 = 0$$



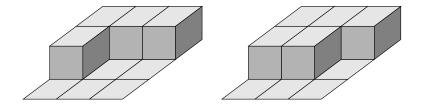


Variational principle for quad equations

For some discrete 2-form

$$\mathcal{L}(\Box_{ij}) = \mathcal{L}(U, U_i, U_j, U_{ij}, \lambda_i, \lambda_j),$$

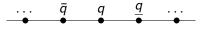
the action $\sum_{\Box \in \Gamma} \mathcal{L}(\Box)$ is critical on all 2-surfaces Γ in \mathbb{Z}^N simultaneously.



The discrete and continuous variational principles are the same.

Semi-discrete systems

Consider particles on a line: 1 discrete dimension, many continuous times



Denote $q_1 = q_{t_1} = \frac{\mathrm{d}q}{\mathrm{d}t_1}$, $q_{11} = q_{t_1t_1} = \frac{\mathrm{d}^2q}{\mathrm{d}t_1^2}$, etc.

Toda lattice: exponential nearest-neighbour interaction

$$q_{11} = \exp(ar{q} - q) - \exp(q - \underline{q}).$$

Part of a hierarchy. First symmetry:

$$q_2=q_1^2+\exp(ar q-q)+\exp(q-ar q)$$

Toda lattice

Lagrangians ("0" for discrete direction)

$$\begin{split} L_{01} &= \frac{1}{2}q_1^2 - \exp(\bar{q} - q) \\ L_{02} &= q_1q_2 - \frac{1}{3}q_1^3 - (q_1 + \bar{q}_1)\exp(\bar{q} - q) \\ L_{12} &= -\frac{1}{4}\left(q_2 - q_{11} - q_1^2\right)^2 \end{split}$$

Euler-Lagrange equations:

$$\begin{aligned} \frac{\delta_{01}L_{01}}{\delta q} &= 0 & \to & q_{11} = \exp(\bar{q} - q) - \exp(q - \underline{q}) \\ \frac{\delta_{02}L_{02}}{\delta q_1} &= 0 & \to & q_2 = q_1^2 + \exp(\bar{q} - q) + \exp(q - \underline{q}) \\ \frac{\delta_{12}L_{12}}{\delta q} &= 0 & \to & \frac{1}{2}q_{22} - q_{11}q_2 - 2q_{12}q_1 - \frac{1}{2}q_{1111} + 3q_1^2q_{11} = 0 \end{aligned}$$

Lagrangian formalism produces a non-trivial PDE at a single lattice site.

Mats Vermeeren

Contents

Introduction to integrable systems

2 Pluri-Lagrangian systems / Lagrangian multiforms

- Lagrangian 1-forms \rightarrow integrable ODEs
- Lagrangian 2-forms \rightarrow integrable PDEs
- Connections to Hamiltonian structures and variational symmetries

Lattice equations: discrete and semi-discrete systems

4 Summary and outlook

Summary

- The Lagrangian multiform (or pluri-Lagrangian) principle describes symmetries and integrability.
 Applies to ODEs and PDEs, discrete and continuous.
- ► Closedness of the Lagrangian form, i.e. dL = 0, is related to variational symmetries (Noether) and Poisson brackets.
- Some open questions:
 - Multiforms as a tool for construction solutions.
 - Full development for semi-discrete systems
 Semi-discrete multiforms in geometric numerical integration?
 Geometric integrators are discrete maps with continuous symmetries.
 - Better understanding of application to gauge theory (∞-dim symmetry groups → Noether's second theorem)
 - Application to quantum integrable systems, path integrals, ...

Selected references

- Lobb, Nijhoff. Lagrangian multiforms and multidimensional consistency. J. Phys. A. 2009.
- Suris. Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms. J. Geometric Mechanics, 2013
- ★ Boll, Petrera, Suris. What is integrability of discrete variational systems? Proc. R. Soc. A. 2014.
- Suris, V. On the Lagrangian structure of integrable hierarchies. In: Advances in Discrete Differential Geometry, Springer. 2016.
- Petrera, Suris. Variational symmetries and pluri-Lagrangian systems in classical mechanics. J. Nonlin. Math. Phys., 2017.
- Sleigh, Nijhoff, Caudrelier. Variational symmetries and Lagrangian multiforms. Letters in Mathematical Physics, 2020.
- ★ V. Hamiltonian structures for integrable hierarchies of Lagrangian PDEs. Open Communications in Nonlinear Mathematical Physics, 2021.
- Caudrelier, Nijhoff, Sleigh, V. Lagrangian multiforms on Lie groups and non-commuting flows. arXiv:2204.09663
- Sleigh, V. Semi-discrete Lagrangian 2-forms and the Toda hierarchy arXiv:2204.130633

Mats Vermeeren