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Liouville-Arnold integrability

A Hamiltonian system with Hamilton function H : T ∗Q ∼= R2N → R is
Liouville integrable if there exist N functionally independent Hamilton
functions H = H1,H2, . . .HN such that {Hi ,Hj} = 0.

▶ Each Hi de�nes its own �ow: N dynamical systems

▶ Each Hi is a conserved quantity for all �ows.

▶ The dynamics is con�ned to a leaf of the foliation {Hi = const}.
▶ If this foliation is compact, its leaves are tori.

▶ Dynamics on these tori are linear in action-angle variables.

▶ The �ows commute:

ϕt
Hi

◦ ϕs
Hj

= ϕs
Hj

◦ ϕt
Hi
.

(In�nitesimally: [XHi
,XHj

] = 0.)
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Two commuting �ows

Let z = (q, p). Consider two Hamiltonian ODEs

df (z)

dt1
= {f (z),H1(z)}

df (z)

dt2
= {f (z),H2(z)}

with {H1,H2} = 0

The �ows commute, meaning that evolution can be parameterised by the
(t1, t2) plane, called multi-time.

t1

t2

•
Initial condition

z(0, 0)

• z(t1, t2) independent
of path through

multi-time

Additional commuting equations can be accommodated by increasing the
dimension of multi-time: RN instead of R2.
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Lagrangian mechanics

Lagrange function L : TQ ∼= R2N → R : (q, qt) 7→ L(q, qt)

Dynamics follows curves which are minimizers (critical points) of the action∫ b

a
L(q, qt) dt with �xed boundary values q(a) and q(b).

Minimizers satisfy the Euler-Lagrange (EL) equation
∂L

∂q
− d

dt

∂L

∂qt
= 0

Proof. Consider an arbitrary variation δq:

δ

∫ b

a
L dt =

∫ b

a

(
∂L

∂q
δq +

∂L

∂qt
δqt

)
dt

Integration by parts yields

δ

∫ b

a
L dt =

∫ b

a

(
∂L

∂q
− d

dt

∂L

∂qt

)
δq dt +

[
∂L

∂qt
δq

]b
a

EL follows because δq(a) = δq(b) = 0 and δq is arbitrary inside (a, b). ■
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Lagrangian formulation of Liouville integrable system

On the Hamiltonian side, commutativity is implied by {Hi ,Hj} = 0.

What about the Lagrangian side?

Suppose we have Lagrange functions Li associated to Hi .

Variational (�Pluri-Lagrangian�) principle for ODEs

Combine the Li into a 1-form

L[q] =
N∑
i=1

Li [q] dti .

Look for dynamical variables q(t1, . . . , tN)
such that the action

IS =

∫
S
L[q]

is critical w.r.t. variations of q, simultaneously
over every curve S in multi-time RN

t1

t2

IS =
∫
L1 dt1

IS =
∫
L2 dt2
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Multi-time Euler-Lagrange equations

Assume that

L1[q] = L1(q, qt1),

Li [q] = Li (q, qt1 , qti ), i ̸= 1

The multi-time Euler-Lagrange equations for L =
∑
i

Li [q] dti are

Usual Euler-Lagrange equations:
∂Li
∂q

− d

dti

∂Li
∂qti

= 0

Usual EL wrt to alien derivatives:
∂Li
∂qt1

− d

dti

∂Li
∂qt1ti

= 0, i ̸= 1

Additional conditions:
∂Li
∂qti

=
∂Lj
∂qtj
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Example: Kepler Problem

The classical Lagrangian

L1[q] =
1

2
|qt1 |2 +

1

|q|
can be combined with

L2[q] = qt1 · qt2 + (qt1 × q) · e (e �xed unit vector)

into a Lagrangian 1-form L = L1dt1 + L2dt2.

Multi-time Euler-Lagrange equations:

∂L1
∂q

− d

dt1

∂L1
∂qt1

= 0 ⇒ qt1t1 = − q

|q|3
(Keplerian motion)

∂L2
∂q

− d

dt2

∂L2
∂qt2

= 0 ⇒ qt1t2 = e × qt1

∂L2
∂qt1

= 0 ⇒ qt2 = e × q (Rotation)

∂L1
∂qt1

=
∂L2
∂qt2

⇒ qt1 = qt1

This 1-form captures just one symmetry. There are more symmetries which
make the Kepler system (super-)integrable.
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Derivation of the multi-time Euler-Lagrange equations

Consider a Lagrangian one-form L =
∑
i

Li [q] dti , with

L1[q] = L1(q, qt1),

Li [q] = Li (q, qt1 , qti ), i ̸= 1

Lemma

If the action
∫
S L is critical on all stepped curves S

in RN , then it is critical on all smooth curves.

Variations are local, so it is su�cient to look at an
L-shaped curve S = Si ∪ Sj .

ti

tj

Si

Sj

C
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Derivation of the multi-time Euler-Lagrange equations

On one of the straight pieces, Si (i ̸= 1), we get

δ

∫
Si

Li dti =

∫
Si

(
∂Li
∂q

δq +
∂Li
∂qt1

δqt1 +
∂Li
∂qti

δqti

)
dti

Integration by parts (wrt ti only) yields ti

tj

Si

Sj

C

δ

∫
Si

Li dti =

∫
Si

((
∂Li
∂q

− d

dti

∂Li
∂qti

)
δq +

∂Li
∂qt1

δqt1

)
dti +

∂Li
∂qti

δq

∣∣∣∣
C

Since p is an interior point of the curve, we cannot set δq(C ) = 0!

Arbitrary δq and δqt1 , so we �nd:

Multi-time Euler-Lagrange equations

∂Li
∂q

− d

dti

∂Li
∂qti

= 0,
∂Li
∂qt1

− d

dti

∂Li
∂qt1ti

= 0,
∂Li
∂qti

=
∂Lj
∂qtj
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Higher order Lagranigans Li [q] = Li(q, qti , qti tj , . . .)

For a string I = ti1 . . . tik of time variables, denote the corresponding
derivative by qI .

If I is empty then qI = q.

Denote by
δi
δqI

the variational derivative in the direction of ti wrt qI :

δiLi
δqI

=
∞∑
α=0

(−1)α
d
α

dtαi

∂Li
∂qItαi

=
∂Li
∂qI

− d

dti

∂Li
∂qIti

+
d
2

dt2i

∂Li
∂qIt2i

− . . .

Multi-time Euler-Lagrange equations

Usual Euler-Lagrange equations:
δiLi
δqI

= 0 ∀I ̸∋ ti ,

Additional conditions:
δiLi
δqIti

=
δjLj
δqItj

∀I ,
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Variational principle for PDEs (d = 2)

Pluri-Lagrangian principle

Given a 2-form
L[q] =

∑
i ,j Lij [q] dti ∧ dtj ,

�nd a �eld q : RN → R, such that

∫
S
L[q] is critical on all smooth surfaces

S in multi-time RN , w.r.t. variations of q.
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Multi-time EL equations

for L[q] =
∑
i ,j

Lij [q] dti ∧ dtj

δijLij
δqI

= 0 ∀I ̸∋ ti , tj ,

δijLij
δqItj

=
δikLik
δqItk

∀I ̸∋ ti ,

δijLij
δqIti tj

+
δjkLjk
δqItj tk

+
δkiLki
δqItk ti

= 0 ∀I .

Where
δijLij
δqI

=
∞∑
α=0

∞∑
β=0

(−1)α+β d
α

dtαi

d
β

dtβj

∂Lij
∂q

Itαi tβj
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Example: Potential KdV hierarchy

ut2 = Q2 = uxxx + 3u2x ,

ut3 = Q3 = uxxxxx + 10uxuxxx + 5u2xx + 10u3x ,

where we identify t1 = x .

The di�erentiated equations uxti =
d

dxQi are Lagrangian with

L12 =
1

2
uxut2 −

1

2
uxuxxx − u3x ,

L13 =
1

2
uxut3 −

1

2
u2xxx + 5uxu

2

xx −
5

2
u4x .

A suitable coe�cient L23 of

L = L12 dt1 ∧ dt2 + L13 dt1 ∧ dt3 + L23 dt2 ∧ dt3

can be found (nontrivial task!) in the form

L23 =
1

2
(ut3Q2 − ut2Q3) + p23.
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Example: Potential KdV hierarchy

▶ The equations
δ12L12
δu

= 0 and
δ13L13
δu

= 0 yield

uxt2 =
d

dx
Q2 and uxt3 =

d

dx
Q3.

▶ The equations
δ12L12
δux

=
δ32L32
δut3

and
δ13L13
δux

=
δ23L23
δut2

yield

ut2 = Q2 and ut3 = Q3,

the evolutionary equations!

▶ All other multi-time EL equations are corollaries of these.
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Exterior derivative of L
Revisit the Kepler problem: L = L1dt1 + L2dt2 with

L1[q] =
1

2
|qt1 |2 +

1

|q|
L2[q] = qt1 · qt2 + (qt1 × q) · e (e �xed unit vector)

Multi-time Euler-Lagrange equations:

qt1t1 = − q

|q|3

qt2 = e × q

Coe�cient of dL
dL2
dt1

− dL1
dt2

=

(
qt1t1 +

q

|q|3

)
(qt2 − e × q)

Observation (also for PDEs): dL often has a �double zero� on solutions.

dL = 0 sets a Lagrangian multiform apart from a pluri-Lagrangian system.
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Interpretation of closedness condition

If dL = 0, then the action is invariant
wrt variations in geometry

Deforming the curve (surface) of
integration leaves action invariant.

t1

t2

•

•

S1

S2

D

∫
S1

L −
∫
S2

L =

∫
D
dL = 0

Recall: before we only took variations
of q.

dL provides an alternative deriva-
tion of the EL equations:

WLOG, we can restrict the vari-
ational principle to simple closed
curves (surfaces) of integration,
i.e. boundaries of submanifolds S .
Then

δ

∫
∂S

L =

∫
S
δdL,

hence the variational principle is
equivalent to δdL = 0.

Multi-time EL equations can be
obtained by taking variations of
(coe�cients of) dL.

Mats Vermeeren Semi-discrete pluri-Lagrangian structures June 28, 2022 15 / 29



Hamiltonian formulation and dL
We can pass between the pluri-Lagrangian and Hamiltonian formalisms for
1-form and 2-forms.

Lemma (dL for 1-forms)

On solutions there holds
dLj
dti

− dLi
dtj

= {Hj ,Hi}.

It follows that:

Theorem

The Hamiltonians are in involution if and only if dL = 0 on solutions.

A similar result holds for 2-forms (and presumably for higher forms)
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Variational Symmetries and dL
dL = 0 expresses that �ows are variational symmetries of each other

d

(∑
i

Li dti

)
= 0 ⇒ dLk

dtj
=

dLj
dtk

⇒ tj -�ow changes Lk by a tk -derivative

⇒ ∂j

∫ b

a
Lk dtk =

∫ b

a

dLj
dtk

dtk = [Lj ]
b
a = const

Adding a constant to the action does not change the dynamics, hence ∂j is
a variational symmetry.

A similar result holds for higher forms.

We can use variational symmetries to construct Lagrangian multiforms.
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Semi-discrete geometry

We consider only 1 discrete direction:
multi-time is Z× RN

A semi-discrete surface is a collection
of surfaces and curves in RN , each as-
signed a value of Z
Curves (white) are where the surface
(black) jumps to a di�erent value of Z

d-dimensional semi-discrete submanifold S

S =

(⊔
k∈Z

Sd−1

k ,
⊔
k∈Z

Sd
k

)

Sd−1

k : disjoint union of oriented (d − 1)-submanifolds of RN

Sd
k : disjoint union of oriented d-submanifolds of RN .

d = 2: semi-discrete surface d = 3: semi-discrete volume
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Semi-discrete geometry

Boundary of S =
(⊔

k∈Z S
d−1

k ,
⊔

k∈Z S
d
k

)
∂S =

(⊔
k∈Z

−∂Sd−1

k ,
⊔
k∈Z

(
∂Sd

k ⊔ Sd−1

k ⊔ −Sd−1

k+1

))
where the minus sign denotes a change of orientation.

Sign conventions are chosen so that the boundary of a boundary is empty.

Dynamical variables will be (scalar) functions q of Z× RN .

Superscript to emphasise lattice position:

q[k] = q(k , t1, . . . , tN)

T denotes shift operator:
T q[k] = q[k+1]
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Semi-discrete geometry

▶ semi-discrete d-form

L[q] =
(
Ld−1[q] , Ld [q]

)
consists of a (d − 1)-form and a d-form, with coe�cients depending
on phase space variables.

▶ The semi-discrete integral over semi-discrete submanifold S∫
S
L[q] =

∑
k

∫
Sd−1
k

Ld−1

[
q[k]
]
+
∑
k

∫
Sd
k

Ld
[
q[k]
]
,

▶ The exterior derivative:

dL =
(
∆(Ld)− dLd−1 , dLd

)
,

where ∆ = id− T −1 is the backward di�erence operator.

▶ Stokes theorem: ∫
S
dL =

∫
∂S

L.
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Variational principle in semi-discrete multi-time

Consider a semi-discrete 2-form∑
j

L0j dtj ,
∑
i ,j

Lij dti ∧ dtj


Look for dynamical variables
q(k, t1, . . . , tN) such that the action

IS =

∫
S
L[q]

is critical w.r.t. variations of q, simul-
taneously over every semi-discrete sur-
face S in multi-time RN
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Semi-discrete variational derivatives

δ0L

δq
[k]
I

:=
∂

∂q
[k]
I

∑
n∈N

T −nL,

δ0iL

δq
[k]
I

:=
δi

δq
[k]
I

∑
n∈N

T −nL.

Traditional discrete EL eqn:

∂

∂q
[k]
I

∑
n∈Z

T −nL = 0

Traditional semi-discrete EL eqn:

δi

δq
[k]
I

∑
n∈Z

T −nL = 0

Same if L only depends on q
[ℓ]
J for

ℓ ≥ k .

Denote q̄ = T q and q = T −1q.

Examples:

δ0iq
2
ti

δq
=

δiq
2
ti

δq
= −2

d

dti
qti = −2qti ti ,

δ0i q̄
2
ti

δq
= −2

d

dti
qti = −2qti ti ,

δ0iqq̄

δq
=

δ0qq̄

δq
= q̄ + q,

δ0iqq

δq
=

δ0qq

δq
= q.
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Semi-discrete multi-time Euler-Lagrange equations

A �eld is critical if and only if the following
multi-time Euler-Lagrange equations hold
for all n ∈ Z:
δijLij

δq
[n]
I

= 0 ∀I ̸∋ ti , tj ,

δijLij

δq
[n]
Itj

− δikLik

δq
[n]
Itk

= 0 ∀I ̸∋ ti ,

δijLij

δq
[n]
Iti tj

+
δjkLjk

δq
[n]
Itj tk

+
δkiLki

δq
[n]
Itk ti

= 0 ∀I ,

δijLij

δq
[n]
Itj

+
δ0iL0i

δq
[n]
I

= 0 ∀I ̸∋ ti ,

δijLij

δq
[n]
Iti tj

−
δ0jL0j

δq
[n]
Itj

+
δ0iL0i

δq
[n]
Iti

= 0 ∀I ,

If n is such that Lij does

not depend on q
[n]
I for any

I , then

δ0iL0i

δq
[n]
I

= 0 ∀I ̸∋ ti ,

δ0jL0j

δq
[n]
Itj

− δ0iL0i

δq
[n]
Iti

= 0 ∀I .
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Toda Lattice

Consider particles on a line: 1 discrete dimension, many continuous times

· · · q = T q

= q[k+1]

q = q[k] q = T −1q

= q[k−1]

· · ·

Denote q1 = qt1 =
dq
dt1

, q11 = qt1t1 =
d2q
dt21

, etc.

Toda lattice: exponential nearest-neighbour interaction

q11 = exp(q̄ − q)− exp(q − q).

It is part of a hierarchy:

q2 = q21 + exp(q − q) + exp(q − q)

q3 = q31 + (2q1 + q
1
) exp(q − q) + (2q1 + q1) exp(q − q)

. . .

Mats Vermeeren Semi-discrete pluri-Lagrangian structures June 28, 2022 24 / 29



Toda lattice

Each member of the Toda hierarchy is Hamiltonian with Hamilton function
of the form

Hi =
∑
α∈Z

T αhi = . . .+ hi + hi + hi + . . .

De�ne L0j = q1qj − hj and Lij in such a way that dL will have a double
zero on solutions of the hierarchy.

This is possible because the Hi are in involution.
We have a formula for Lij , which this slide is too small to contain.

Semi-discrete Lagrangian 2-form
(∑

j L0j dtj ,
∑

i ,j Lij dti ∧ dtj

)
with

L01 =
1

2
q21 − exp(q̄ − q)

L02 = q1q2 −
1

3
q31 − (q1 + q̄1) exp(q̄ − q)

L12 = −1

4

(
q2 − q11 − q21

)2
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Toda lattice

Euler-Lagrange equations:

δ01L01
δq

= 0 → q11 = exp(q̄ − q)− exp(q − q)

δ02L02
δq1

= 0 → q2 = q21 + exp(q̄ − q) + exp(q − q)

δ12L12
δq

= 0 → 1

2
q22 − q11q2 − 2q12q1 −

1

2
q1111 + 3q21q11 = 0 (∗)

By construction, the variational principle is satis�ed by the Toda hierarchy,
so (∗) must be a consequence of the di�erential-di�erence equations

(∗) itself is an integrable PDE

The �rst two Toda equations can we written as

exp(q̄ − q) =
1

2
(q2 + q11 − q21), exp(q − q) =

1

2
(q2 − q11 − q21).

and form an auto-Bäcklund transformation for (∗)
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Toda lattice

A the next level we �nd

L03 = q1q3 −
1

4
q41 − a(q21 + q21 + q1q1)− aa+

1

2
a2,

L13 = −a
(
q31 + 2aq1 + aq1 + 2q1q11 + q1q11 − q3 + aq1 − aq1

)
,

L23 = −a
(
q2
(
q21 + q21 + q1q1 + a+ a

)
+ q2a+ 2q1q12 + q1q12 − q13

− q3 (q1 + q1)− q21q
2

1 − aq21 + 2aq1q1 − aq21 − aa− aa− aa− a2
)
.,

where a = exp(q̄ − q)

Again we can use the multi-time Euler-Lagrange equations to obtain a PDE
at a single lattice site:

δ13L13
δq

= 0 → q31 − 3q1q11 + 6q1a+ q111 − q3 = 0,

which can be simpli�ed to

q3 = −2q31 + 3q1q2 + q111.
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Summary

▶ The Lagrangian multiform or pluri-Lagrangian principle describes
symmetries and integrability.

Applies to ODEs and PDEs, discrete and continuous.

▶ Closedness of the Lagrangian form, i.e. dL = 0, is related to
variational symmetries and Hamiltonians in involution.

δdL = 0 is equivalent to the variational problem.

▶ We constructed semi-discrete Lagrangian 2-from for the Toda
hierarchy. It reveals that integrable PDEs are hidden within.
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