

A variational principle for integrable systems

Mats Vermeeren

17th International Young Researchers Workshop on Geometry, Mechanics and Control

March 29-31, 2023

Contents

Hamiltonian Systems

Hamilton function

$$H: T^*Q \cong \mathbb{R}^{2N} \to \mathbb{R}: (q,p) \mapsto H(q,p)$$

determines dynamics:

$$\dot{q}_i = rac{\partial H}{\partial p_i}$$
 and $\dot{p}_i = -rac{\partial H}{\partial q_i}$

Canonical Poisson bracket of two functions of T^*Q :

$$\{f,g\} = \sum_{i=1}^{N} \left(\frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} - \frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} \right)$$

Dynamics:

$$\frac{\mathrm{d}}{\mathrm{d}t}f(q,p) = \big\{H(q,p),f(q,p)\big\}$$

Note that f is a conserved quantity if and only if $\{H, f\} = 0$.

Liouville integrability

A Hamiltonian system with Hamilton function $H : T^*Q \cong \mathbb{R}^{2N} \to \mathbb{R}$ is Liouville integrable if there exist N functionally independent functions $H = H_1, H_2, \ldots, H_N$ that satisfy $\{H_i, H_j\} = 0$.

- ► Each *H_i* defines its own flow: *N* dynamical systems
- Each H_i is a conserved quantity for all flows.
- The flows commute.

Integrability \approx being part of a large set of compatible equations

Consequences:

- State stays on a level set $\{H_i = \text{const}\}$.
- If compact, this level set is a torus.
- Dynamics on the torus is linear in action-angle variables.

Two commuting flows

Let z = (q, p). Consider two Hamiltonian ODEs $\frac{\mathrm{d}f(z)}{\mathrm{d}t_1} = \{H_1(z), f(z)\}$ with $\{H_1, H_2\} = 0$ $\frac{\mathrm{d}f(z)}{\mathrm{d}t_2} = \{H_2(z), f(z)\}$

The flows commute, meaning that evolution can be parametrised by the (t_1, t_2) plane, called multi-time.

Additional commuting equations can be accommodated by increasing the dimension of multi-time: \mathbb{R}^n instead of \mathbb{R}^2 .

Lagrangian formulation of Liouville integrable system

On the Hamiltonian side, commutativity is implied by $\{H_i, H_j\} = 0$.

What about the Lagrangian side?

Suppose we have Lagrange functions L_i associated to H_i .

Pluri-Lagrangian (Lagrangian multi-form) principle for ODEs combine the L_i into a Lagrangian 1-form

$$\mathcal{L}[q] = \sum_{i=1}^{N} L_i[q] \,\mathrm{d}t_i.$$

Look for dynamical variables $q(t_1, \ldots, t_N)$ such that the action

$$S_{\Gamma} = \int_{\Gamma} \mathcal{L}[q]$$

is critical w.r.t. variations of q, simultaneously over every curve Γ in multi-time \mathbb{R}^N

Multi-time Euler-Lagrange equations

Assume that

 $L_1[q] = L_1(q, q_{t_1})$ and $L_i[q] = L_i(q, q_{t_1}, q_{t_i}), i \neq 1$ Then the multi-time Euler-Lagrange equations for $\mathcal{L} = \sum_i L_i[q] dt_i$ are

Usual Euler-Lagrange equations:
$$\frac{\partial L_i}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t_i} \frac{\partial L_i}{\partial q_{t_i}} = 0$$

Usual EL wrt to alien derivatives: $\frac{\partial L_i}{\partial q_{t_1}} - \frac{\mathrm{d}}{\mathrm{d}t_i} \frac{\partial L_i}{\partial q_{t_1 t_i}} = 0, \quad i \neq 1$
Additional conditions: $\frac{\partial L_i}{\partial q_{t_i}} = \frac{\partial L_j}{\partial q_{t_j}}$

Suris. Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms. J. Geometric Mechanics, 2013

Suris, V. On the Lagrangian structure of integrable hierarchies. In: Advances in Discrete Differential Geometry, Springer. 2016.

Example: Kepler Problem

The classical Lagrangian

$$L_1[q] = \frac{1}{2}|q_{t_1}|^2 + \frac{1}{|q|}$$

can be combined with

 $L_2[q] = q_{t_1} \cdot q_{t_2} + (q_{t_1} imes q) \cdot e$ (e fixed unit vector)

into a Lagrangian 1-form $\mathcal{L} = L_1 dt_1 + L_2 dt_2$.

1

Multi-time Euler-Lagrange equations:

Derivation of the multi-time Euler-Lagrange equations

Consider a Lagrangian one-form $\mathcal{L} = \sum_{i} L_{i}[q] dt_{i}$

Lemma

If the action $\int_{\Gamma} \mathcal{L}$ is critical on all stepped curves Γ in \mathbb{R}^N , then it is critical on all smooth curves.

Variations are local, so it is sufficient to look at an L-shaped curve $\Gamma = \Gamma_i \cup \Gamma_j$.

Derivation of the multi-time Euler-Lagrange equations

On one of the straight pieces, Γ_i ($i \neq 1$), we get

$$\delta \int_{\Gamma_i} L_i \, \mathrm{d}t_i = \int_{\Gamma_i} \left(\frac{\partial L_i}{\partial q} \delta q + \frac{\partial L_i}{\partial q_{t_1}} \delta q_{t_1} + \frac{\partial L_i}{\partial q_{t_i}} \delta q_{t_i} \right) \mathrm{d}t_i$$

Integration by parts (wrt t_i only) yields

$$\delta \int_{\Gamma_i} L_i \, \mathrm{d}t_i = \int_{\Gamma_i} \left(\left(\frac{\partial L_i}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t_i} \frac{\partial L_i}{\partial q_{t_i}} \right) \delta q + \frac{\partial L_i}{\partial q_{t_1}} \delta q_{t_1} \right) \mathrm{d}t_i + \frac{\partial L_i}{\partial q_{t_i}} \delta q \bigg|_p$$

Since p is an interior point of the curve, we cannot set $\delta q(p) = 0!$ Arbitrary δq and δq_{t_1} so we find:

Multi-time Euler-Lagrange equations

$$\frac{\partial L_i}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t_i} \frac{\partial L_i}{\partial q_{t_i}} = 0, \qquad \frac{\partial L_i}{\partial q_{t_1}} = 0, \qquad \frac{\partial L_i}{\partial q_{t_i}} = \frac{\partial L_j}{\partial q_{t_j}}$$

PDEs (2-dimensional)

Pluri-Lagrangian (Lagrangian multi-form) principle Given a 2-form

$$\mathcal{L} = \sum_{i,j} L_{ij}[q] \,\mathrm{d}t_i \wedge \mathrm{d}t_j,$$

find a field $q(t_1, \ldots, t_N)$, such that $\int_{\Gamma} \mathcal{L}$ is critical on all smooth 2-dimensional surfaces Γ in multi-time \mathbb{R}^N , w.r.t. variations of q.

Multi-time Euler-Lagrange equations are again a combination of the usual Euler-Lagrange equations and new ones involving several L_{ij} .

Examples: potential KdV hierarchy, AKNS hierarchy, ...

Mats Vermeeren – Loughborough

A variational principle for integrable systems

2-form example

Consider the first two equations of the potential KdV hierarchy:

$$egin{aligned} q_{t_2} &= q_{xxx} + 3q_x^2, \ q_{t_3} &= q_{xxxx} + 10q_xq_{xxx} + 5q_{xx}^2 + 10q_x^3, \end{aligned}$$

where we set $t_1 = x$. These are Lagrangian, in a weak sense, with

$$L_{12} = \frac{1}{2}q_{x}q_{t_{2}} - \frac{1}{2}q_{x}q_{xxx} - q_{x}^{3},$$

$$L_{13} = \frac{1}{2}q_{x}q_{t_{3}} - \frac{1}{2}q_{xxx}^{2} + 5q_{x}q_{xx}^{2} - \frac{5}{2}q_{x}^{4}.$$

A suitable coefficient L_{23} of

$$\mathcal{L} = \mathcal{L}_{12} \,\mathrm{d}t_1 \wedge \mathrm{d}t_2 + \mathcal{L}_{13} \,\mathrm{d}t_1 \wedge \mathrm{d}t_3 + \mathcal{L}_{23} \,\mathrm{d}t_2 \wedge \mathrm{d}t_3$$

can be found (nontrivial task!), depending on

$$q_x, q_{xx}, \ldots, \qquad q_{t_2}, q_{xt_2}, \ldots, \qquad q_{t_3}, q_{xt_3}, \ldots$$

2-form example

The usual Euler-Lagrange equations of L_{12} and L_{13} yield

$$\begin{aligned} q_{\mathsf{x}t_2} &= \frac{\mathrm{d}}{\mathrm{d}\mathsf{x}}(q_{\mathsf{x}\mathsf{x}\mathsf{x}} + 3q_{\mathsf{x}}^2) \\ q_{\mathsf{x}t_3} &= \frac{\mathrm{d}}{\mathrm{d}\mathsf{x}}(q_{\mathsf{x}\mathsf{x}\mathsf{x}\mathsf{x}} + 10q_{\mathsf{x}}q_{\mathsf{x}\mathsf{x}\mathsf{x}} + 5q_{\mathsf{x}\mathsf{x}}^2 + 10q_{\mathsf{x}}^3), \end{aligned}$$

but the multi-time Euler-Lagrange equations of $\mathcal L$ consist of

$$egin{aligned} q_{t_2} &= q_{ imes xx} + 3q_x^2 \ q_{t_3} &= q_{ imes xxx} + 10q_x q_{ imes xx} + 5q_{ imes xx}^2 + 10q_x^3, \end{aligned}$$

and consequences thereof.

Connections to established concepts

We can pass between the pluri-Lagrangian and Hamiltonian formalisms for 1-forms* and 2-forms[†].

The Hamiltonians are in involution if and only if $d\mathcal{L} = 0$ on solutions.

- Lagrangian 2-forms can be derived from matrix Lax pairs with a rational dependence on the spectral parameter.[‡]
- ► The flows of a pluri-Lagrangian system are variational symmetries of each other if and only if dL = 0 on solutions.[§]

* Suris. Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms. J. Geometric Mechanics, 2013

[†] V. Hamiltonian structures for integrable hierarchies of Lagrangian PDEs Open Communications in Nonlinear Mathematical Physics, 2021.

[‡] Sleigh, Nijhoff, Caudrelier. A variational approach to Lax representations. Journal of Geometry and Physics, 2019.

[§] Petrera, V. Variational symmetries and pluri-Lagrangian structures for integrable hierarchies of PDEs. European Journal of Mathematics, 2021

Discretisation of Hamiltonian systems

 $\begin{array}{rrr} \mathsf{Hamiltonian} \ \mathsf{ODE} & \to & \mathsf{symplectic} \ \mathsf{map} \end{array}$

Variational principles are easier to discretise Lagrangian multiforms provide a unified perspective

Quad equations

Discrete integrable equation for $U : \mathbb{Z}^2 \to \mathbb{R}$:

 $\mathcal{Q}(U, U_1, U_2, U_{12}, \lambda_1, \lambda_2) = 0$

- Subscripts of *U* denote lattice shifts.
- λ_1, λ_2 are lattice parameters.

Discrete analogue of commuting flows:

Multi-dimensional consistency

The three ways of calculating U_{123} , using

$$\mathcal{Q}(U, U_i, U_j, U_{ij}, \lambda_i, \lambda_j) = 0,$$

and its shifts, give the same result.

Example: lattice potential KdV:

$$(U-U_{12})(U_1-U_2)-\lambda_1+\lambda_2=0$$

 λ_1

 U_1

Variational principle for quad equations

For some discrete 2-form

$$\mathcal{L}(\Box_{ij}) = \mathcal{L}(U, U_i, U_j, U_{ij}, \lambda_i, \lambda_j),$$

the action $\sum_{\Box \in \Gamma} \mathcal{L}(\Box)$ is critical on all 2-surfaces Γ in \mathbb{Z}^N simultaneously.

Discretising Hamiltonian structures is ambiguous. But the discrete and continuous variational principles are essentially the same.

Lobb, Nijhoff. Lagrangian multiforms and multidimensional consistency. J. Phys. A. 2009.

Mats Vermeeren – Loughborough A variational principle for integrable systems

Semi-discrete Lagrangian multiforms

Consider a sequence of particles on a line:

One discrete (space) dimension, many continuous times.

Toda lattice: exponential forces between neighbours,

$$q_{t_1t_1} = \exp(\bar{q} - q) - \exp(q - \underline{q}). \tag{T1}$$

(T1) is part of a hierarchy. Its next member is

$$q_{t_2} = q_{t_1}^2 + \exp(\bar{q} - q) + \exp(q - \underline{q}). \tag{T2}$$

It possesses a semi-discrete Lagrangian 2-form with the following coefficients ("0" stands for the discrete direction):

$$\begin{split} L_{01} &= \frac{1}{2} q_{t_1}^2 - \exp(\bar{q} - q), \\ L_{02} &= q_{t_1} q_{t_2} - \frac{1}{3} q_{t_1}^3 - (q_{t_1} + \bar{q}_{t_1}) \exp(\bar{q} - q), \\ L_{12} &= \frac{1}{4} \left(\bar{q}_{t_2} - \bar{q}_{t_1 t_1} - \bar{q}_{t_1}^2 \right)^2. \end{split}$$

Semi-discrete Lagrangian multiforms

For the semi-discrete Lagrangian 2-form with coefficients

$$\begin{split} L_{01} &= \frac{1}{2} q_{t_1}^2 - \exp(\bar{q} - q), \\ L_{02} &= q_{t_1} q_{t_2} - \frac{1}{3} q_{t_1}^3 - (q_{t_1} + \bar{q}_{t_1}) \exp(\bar{q} - q), \\ L_{12} &= \frac{1}{4} \left(\bar{q}_{t_2} - \bar{q}_{t_1 t_1} - \bar{q}_{t_1}^2 \right)^2. \end{split}$$

the multi-time Euler-Lagrange equations are

$$q_{t_1t_1} = \exp(\bar{q} - q) - \exp(q - \underline{q}), \tag{T1}$$

$$q_{t_2} = q_{t_1}^2 + \exp(\bar{q} - q) + \exp(q - \underline{q}), \tag{T2}$$

and

$$\frac{1}{2}q_{t_2t_2} - q_{t_1t_1}q_{t_2} - 2q_{t_1t_2}q_{t_1} - \frac{1}{2}q_{t_1t_1t_1} + 3q_{t_1}^2q_{t_1t_1} = 0.$$

The multiform produces a scalar PDE at a single lattice site. It can be shown that the system (T1)-(T2) implies this PDE.

Sleigh, V. Semi-discrete Lagrangian 2-forms and the Toda lattice. J. Phys. A. 2022.

Summary

- Lagrangian multiforms (pluri-Lagrangian systems) provide a unified approach to various types of integrable systems:
 ODEs and PDEs, discrete, semi-discrete, and continuous.
- Closedness of the Lagrangian form, i.e. dL = 0, is related to variational symmetries and Hamiltonians in involution.

To do:

...

- Relation to bi-Hamiltonian structures.
- Characterisation of special solutions.
- Relations between integrable systems of different kinds.
- Links to differential geometry.
- ► Application to gauge theories (infinite-dimensional symmetry groups).
 → Noether's second theorem.

Thank you for your attention!

18 / 19