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Liouville integrability

A Hamiltonian system with Hamilton function H: T*Q 2 R?*N - R is
Liouville integrable if there exist N functionally independent Hamilton
functions H = Hy, Ho, ... Hy such that {H;, H;} = 0.

» Each H; defines its own flow ¢H N dynamlcal systems
» The flows commute: gi) gZ) qS
(Infinitesimally: [XH,-,XHJ-] = O.)

We can consider (g, p) as a function of multi-time, RN — T*Q:

(t1;-~-7tN) — (q(tl,. . .,tN),p(tl,...,tN))

by (Q(tl’t2) p(t1, 1))

. ' independent of path

through multi-time
Initial condition

(9(0,0), p(0,0)) =ommcoceeeooo. . -t
T ——




Lagrangian mechanics
Lagrange function L: TQ 2 R?N ~R:(q,q,)— L(q,q,)
Dynamics follows curves which are minimizers (critical points) of the action

b
/ L(q,q,)dt with fixed boundary values g(a) and q(b).

oL d oL
Minimizers satisfy the Euler-Lagrange (EL) equation — — ——— =0

oq dtoq,

Proof. Consider an arbitrary variation dq:

b b
oL oL
6/ Ldt:/ <5 + —94 )dt
2 , \0g"7 " 8q,°

Integration by parts yields

b b b
oL d oL oL
5/ Ldt:/ < - ) Sqdt + [6q]
a 2 \dq dtoq, aq, |,

EL follows because dq(a) = dq(b) = 0 and éq is arbitrary inside (a,b). W
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Lagrangian formulation of Liouville integrable system

Suppose we have Lagrange functions L; associated to H;. Consider

g :RY — @ (multi-time to configuration space)

Variational (“Pluri-Lagrangian”) principle for ODEs

Combine the L; into a 1-form

N
Llq) =) Lilq]dt;.
i=1

Look for q(t1, ..., ty) such that the action

Sr = /rﬁ[Q]

is critical w.r.t. variations of g, simultaneously

A -Sr:fLthg

1
1
1
1
1
1
1
1
.
1
1
1
4

. L : t
over every curve [ in multi-time RV :
Lagrangian multiform principle: the action is the same for all curves.
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Multi-time Euler-Lagrange equations
Assume that

Li[q] = Li(q, qy),
Lilq] = Li(q,q.,,9;), i#1

The multi-time Euler-Lagrange equations for £ = Z Li[q] dt; are

I

L,' d Li
Usual Euler-Lagrange equations: aa_q - d_t,-aaqtl. =0

oL

[ =0, i#1
8qtl
L; oL;
Compatibility conditions: 0 = 7
8qt‘,- aqtj
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Example: Kepler Problem

Take 1

lq|
Lo=q; -q,+(q, xq) -V (7 fixed unit vector)

1
L]- = §|qt1’2 +

In general: L; = q,, - q,, — Hi(q,q,,)

Multi-time Euler-Lagrange equations of £ = Lidt; + Lydt,

ol d 0L q . .
it R =0 = =_——L Keplerian motion
oq dt dq, = q[3 e )
oL, d JL .
—_— - — =0 = =
aq dt2 aqtz qt1t2 v X qtl
oL, .
=0 = gq,=VXxgq Rotation
aqtl 2 ( )
aL oL
! = & = qt1 = qt1
8qt1 8qt2
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Derivation of the multi-time Euler-Lagrange equations
Consider a Lagrangian one-form £ = Z Li[q] dt;, with

Ll[Q] = Ll(qvqtl)v
L:[q] = Li(qaqt17qt,-)1 I7é 1

Lemma 7Q

If the action er is critical on all stepped curves '
in RN, then it is critical on all smooth curves. Zan

Variations are local, so it is sufficient to look at an
L-shaped curve I =T; UT;.
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Derivation of the multi-time Euler-Lagrange equations

On one of the straight pieces, I'; (i # 1), we get tj

oL; oL; oL;
= +—9 dt;
5/ Lidt; = /,- (8 94, 6% qt;) t

Integration by parts (wrt t; only) yields

oL; d 9JL; oL; oL;
5/L;dt,-:/(< L - — ')5 + =94 >dt,-—|— Léq
r r dq dt;oq, 9 oqy, T 0q,.

I

Since C is an interior point of the curve, we cannot set 6q(C) = 0!
Arbitrary 6q and éq,,, so we find:

Multi-time Euler-Lagrange equations

oL _d oL _ oL _ oL, ol
oq dt; 0q,, ’ oq, ’ dq, 0q,
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Higher order Lagranigans Li[q] = Li(q, qy,, Qs - - -)
For a string | = t;, ... t; of time variables, denote the corresponding
derivative by q;.

If I is empty then q, = q.

0
Denote by — 5a the variational derivative in the direction of t; wrt q;:
q

(6% da
56]/ ;(_ ) e 3‘1/t&

_ oL d oL 4 L
- 8q, dt, 8q/f,‘ dtl2 8q/t_2

Multi-time Euler-Lagrange equations

iLi
Usual Euler-Lagrange equations: (cSSq =0 VI Z t,
I
oiL; OiL;
Additional conditions: =4 Vi,
5q/t’,‘ 5q/tj
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Variational principle for PDEs (d = 2)

Pluri-Lagrangian principle

Given a 2-form
Llq] =3, Lilgldti Adt,

find a field g : RN — R, such that /ﬁ[q] is critical on all smooth surfaces
r

I in multi-time RV, w.r.t. variations of q.
v
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Multi-time EL equations
for L[q] =Y Lylqldt; Adt;
ij
5ULU
— =0 VI & t;, t;,
dq 2t
5ULU _ 5ikl—ik
5qltj 5qltk
5,'J'L,'j n 5jkl-jk i OkiLki
6qlt,'tj 5QItjtk 5‘7/tkt,-

VI 2 t;,

=0 vI.

Where

d* df oL
5ql ZZ a+/3 U]

a=0 =0 dta dtB aq/ atﬂ

Mats Vermeeren
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Example: Potential KdV hierarchy

Jt, = Qxxx T 3q>2<7

Qt; = Qxxxxx + 10qquxx + 5CI)2<X + 10q)?;7
where we identify t; = x.

The differentiated equations gy, = %(- -+ ) are Lagrangian with

L, = L 3
12 = 2qXQt2 2qquxx dx,

1 1, , 5
L13 = 59xGt — 5 G0 + 50x o — Eq;‘.

A suitable coefficient L3 of

L= 1Lipdty ANdtr + Lizdty Adtz + Loz diy, Adts

can be found (nontrivial task!).
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Example: Potential KdV hierarchy

d12L12 013L13

dq

» The equations =0 and =0 yield

d
Axt, = & (qxxx + 3%2() )

d
Qxt; = d7 (qxxxxx + 10gxgxx + 5q)2(x + 10q§) .

012L12 632132 013L13  da3loz .
and yield

» The equations = =
dqx e dqx dqt,

Qt, = Qxxx + 3CI§7
Qt; = Qxxxxx + 1quqxxx + 5q>2<x + ]-Oq)?:v

the evolutionary equations!

» All other multi-time EL equations are corollaries of these.

Mats Vermeeren A variational principle for integrable systems December, 2024 16 /33



Hamiltonian structure

Set p[q] = 1—;” (independent of j), then Li; = p[q]q; — hj[q]

0 0l _ 3 <(_1)k8kap[q] _ pld] axk) L
k

oq X 0qu  Oquk oq

Ep

Then, q; = 5,31%4 so h; are Hamiltonians wrt the Poisson bracket

{[fdx, [gdx} =— gfé’ 1(;gdx

Example: potential KdV

1 _ _ [of 108
plal=sax. & =—0x {ffdx,fgdx}_/6q8X 5qd

In the KdV variable u = gy, this becomes

{[fdx, [gdx} = /( 5f> 08 4x
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Exterior derivative of L

Revisit the Kepler problem: £ = Lydt; + Lodt, with
1
q|
Llql =q;, -9, +(q;, xq) -V (¥ fixed unit vector)

1
Lilq] = 519, " +

Multi-time Euler-Lagrange equations:

q N
_W q, =V Xq

qtltl -

Coefficient of AL

dL2 dLl . q &
dt]_ dt2 - <ql’1t1 + |q|3 (qt2 v X q)

Observation: d£ typically has a “double zero” on solutions.
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Interpretation of closedness condition |

If d£ = 0, the action is invariant wrt variations in geometry

to S
/z’ (]
r2 2 l’
p ’
y A/
’ ’
s 4
’ 4 r].

______

> 11
/E—/ Ez/dE:O
[ [P A

Lagrangian multiform principle

Require that
» pluri-Lagrangian principle holds (variations of q),
» deforming the curve of integration leaves action invariant.
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Interpretation of closedness condition Il

dL provides an alternative derivation of the EL equations:

WLOG, we can restrict the variational principle to simple closed curves,

i.e. boundaries of a surface D.

Then
1) E = / odL,

hence the pluri-Lagrangian prlnClple is equivalent to 6dL = 0.

If d£ has a double zero on a set of equations £y =0, E, =0, ...,

dL =) EE;dt Adt

i
or
dc=>" (Z c(;*jﬁEaEg>dt,- A dt;,
i ap

then q is critical if £ =0, E, =0, ...

Mats Vermeeren A variational principle for integrable systems December, 2024
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Semi-discrete systems

Consider particles on a line: 1 discrete dimension, many continuous times

q q q

— o ——0—0— 00—

d d?
Denote d1 = qy = Tg: a1 = qut = Té?: etc.

Toda lattice: exponential nearest-neighbour interaction

qu1 = exp(g — q) — exp(q — q).

Part of a hierarchy. First symmetry:

@ =qi +exp(3 — q) + exp(q — q)
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Semi-discrete geometry

Consider the case with only 1 discrete direction: Z x RN

A semi-discrete surface is a collection of surfaces and curves in RV, each at
a specified point in Z

Intuition: curves where the surface jumps to a different value of Z

1
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Semi-discrete geometry

» Consider (scalar) functions q of Z x RV,
Superscript to emphasise lattice position: gl = q(k, t1,..., ty)
» Semi-discrete 2-form L[q] is part 1-form and part 2-form:
components Lg; are integrated over curves,
components L;; integrated over surfaces.

» We have semi-discrete versions of the exterior derivative, the
boundary, and Stokes theorem

Variational principle
Look for q(k, t1, ..., ty) such that the action

[ ¢t

is critical w.r.t. variations of g, simultaneously over every semi-discrete
surface I'.
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Toda lattice

Lagrangians (“0” for discrete direction)

1 _
Loy = 547 — exp(G — q)

1 . )
Loy = q1Ga — §qf —(q1+ 1) exp(G — q)

1
L = ~1 (g2 — qu1 — Q%)z

Euler-Lagrange equations:

do1L ol

doaL
052q102 —0 5 @ = i +exp(d — q) + exp(q — q)

SiaL L .
12712 _ — “g22 — G11G2 — 2q12G1 — ~ 1111 + 3G5G11 = 0
oq 2 2

Lagrangian formalism produces a non-trivial PDE at a single lattice site.
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Non-commuting flows

What if symmetries that do not commute with each other?

euclidean multi-time —  Lie group

0 Lie algebra el t
R {leageraeemenf

ot; infinitesimal generator O of its action

The relation between Poisson brackets and d£ becomes
{He, H} = Hig,,j + 0¢10,2dL + (EL eqs)?,
where H; is the Hamiltonian of O

Hence d£ = 0 encodes the Lie algebra structure.
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Example: rotation group for central force system
Multi-time: R x SO(3), generators &y(= %),51,52,53 with
[£1,6] =& (and cyclic permutations of 1,2,3)

Lagrangian 1-form defined by
1
Lo = Okl = 2ol — V(lal)
Li=05L=q0-q;—(qxq)-€  fori=123

Multi-time Euler-Lagrange equations:
g0 = —VV(lal) qg,=6e xq

Closure relation:
Og;10g;0dL = Og,Lj — O, Li — [Og;, Og ] oL
= (qo; —€i X qq) - (q; — €j x q)
—(gg; —€;xqg)-(q; —eixq)=0

Mats Vermeeren A variational principle for integrable systems December, 2024

29/33



Is multi-time always a Lie group?
If
{Hi, Hj} = CfHx,
k

then yes:
(X, Xl =D ChHi
k

Example: Kepler problem with angular momentum £ and Runge-Lenz
vector A. We have {H,-} =0 and

i, 0y = —ejpclc,  {AiL 4} = —€ipAr,  {Ai A} = 2€uHE

A .
vV—2H"

{4i, 0} = —€jjiclic, {Ai, 0} = —€iAx, {Ai A} = —ejicli

can be linearised by setting A=

When linearisation is not possible, we think multi-time should be a
Lie groupoid. (Details have not been worked out!)
December, 2024  30/33
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Summary

Lagrangian multiform (or pluri-Lagrangian) provides a unified perspective
on integrable* ODEs and PDEs, discrete, semi-discrete and continuous.

*or Lagrangian systems with any amount of symmetry

Much work to do:
» Geometry of multi-time for general superintegrable systems?
Multiforms as a tool for constructing solutions?

Full development of semi-discrete case?

>
>
» Semi-discrete multiforms in geometric numerical integration?
» Applications to gauge theory?

>

Application to quantum integrable systems, path integrals, ...7
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