A variational principle for integrable systems

Mats Vermeeren

Milano

December, 2024

[Introduction](#page-4-0)

- (2) [Lagrangian 1-forms](#page-5-0) \rightarrow integrable ODEs
- (3) [Lagrangian 2-forms](#page-20-0) \rightarrow integrable PDEs
- Exterior derivative and "double zeroes"
- 5 [Semi-discrete Lagrangian multiforms](#page-0-1)
- 6 [Lagrangian multiforms on Lie groups](#page-0-1)

[Outlook](#page-0-1)

[Introduction](#page-4-0)

(2) [Lagrangian 1-forms](#page-5-0) \rightarrow integrable ODEs

- (3) [Lagrangian 2-forms](#page-20-0) \rightarrow integrable PDEs
- Exterior derivative and "double zeroes"
- 5 [Semi-discrete Lagrangian multiforms](#page-0-1)
- 6 [Lagrangian multiforms on Lie groups](#page-0-1)

[Outlook](#page-0-1)

Liouville integrability

A Hamiltonian system with Hamilton function $H:\,T^\ast Q \cong \mathbb{R}^{2N} \to \mathbb{R}$ is Liouville integrable if there exist N functionally independent Hamilton functions $H=H_1,H_2,\ldots H_N$ such that $\{H_i,H_j\}=0.$

- \blacktriangleright Each H_i defines its own flow $\phi_{H_j}^t$: N dynamical systems
- \blacktriangleright The flows commute: $\phi^{t_i}_P$ $\overset{t_i}{H_i} \circ \phi_L^{t_j}$ $\overset{t_j}{H_j} = \phi_L^{\mathbf{s}_j}$ $\overset{\mathsf{s}_j}{H_j}\circ \phi_{\mathsf{F}}^{t_j}$ $\stackrel{\iota_i}{H_i}$. (Infinitesimally: $[X_{H_i}, X_{H_j}]=0$)

We can consider (\bm{q},\bm{p}) as a function of multi-time, $\mathbb{R}^{\textit{N}}\rightarrow\mathcal{T}^{\ast}\mathcal{Q}$:

$$
(t_1,\ldots,t_N)\mapsto(\boldsymbol{q}(t_1,\ldots,t_N),\boldsymbol{p}(t_1,\ldots,t_N))
$$

Lagrangian mechanics

Lagrange function $L:\mathcal{T} Q\cong\mathbb{R}^{2N}\to\mathbb{R}:(\bm{q},\bm{q}_t)\mapsto L(\bm{q},\bm{q}_t)$

Dynamics follows curves which are minimizers (critical points) of the action

 \int^b $\int\limits_a^b L(\bm{q},\bm{q}_t)\,\mathrm{d}t$ with fixed boundary values $\bm{q}(a)$ and $\bm{q}(b)$.

Minimizers satisfy the Euler-Lagrange (EL) equation

$$
\frac{\partial L}{\partial \mathbf{q}} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \mathbf{q}_t} = 0
$$

Proof. Consider an arbitrary variation $\delta \bm{q}$.

$$
\delta \int_{a}^{b} L dt = \int_{a}^{b} \left(\frac{\partial L}{\partial \mathbf{q}} \delta \mathbf{q} + \frac{\partial L}{\partial \mathbf{q}_{t}} \delta \mathbf{q}_{t} \right) dt
$$

Integration by parts yields

$$
\delta \int_{a}^{b} L dt = \int_{a}^{b} \left(\frac{\partial L}{\partial \mathbf{q}} - \frac{d}{dt} \frac{\partial L}{\partial \mathbf{q}_{t}} \right) \delta \mathbf{q} dt + \left[\frac{\partial L}{\partial \mathbf{q}_{t}} \delta \mathbf{q} \right]_{a}^{b}
$$

EL follows because $\delta \mathbf{q}(a) = \delta \mathbf{q}(b) = 0$ and $\delta \mathbf{q}$ is arbitrary inside (a, b) .

Lagrangian formulation of Liouville integrable system

Suppose we have Lagrange functions L_i associated to H_i . Consider $\boldsymbol{q}:\mathbb{R}^{\textit{N}}\rightarrow\mathcal{Q}$ $\;\;($ multi-time to configuration space)

Variational ("Pluri-Lagrangian") principle for ODEs Combine the L_i into a 1-form $\mathcal{L}[q] = \sum$ N $i=1$ $L_i[\boldsymbol{q}] \, \mathrm{d} t_i.$ Look for $\boldsymbol{q}(t_1,\ldots,t_N)$ such that the action $S_{\Gamma} =$ Γ $\mathcal{L}[\bm{q}]$ is critical w.r.t. variations of q , simultaneously over every curve **Γ** in multi-time \mathbb{R}^N $t₁$ ^{t_{2}} \uparrow : $S_{\Gamma} = \int L_2 dt_2$ </sup> $S_{\Gamma} = \int L_1 dt_1$

Lagrangian multiform principle: the action is the same for all curves.

Multi-time Euler-Lagrange equations

Assume that

$$
L_1[\boldsymbol{q}] = L_1(\boldsymbol{q}, \boldsymbol{q}_{t_1}),
$$

$$
L_i[\boldsymbol{q}] = L_i(\boldsymbol{q}, \boldsymbol{q}_{t_1}, \boldsymbol{q}_{t_i}), \quad i \neq 1
$$

The multi-time Euler-Lagrange equations for $\mathcal{L} = \sum L_i [\bm{q}] \, \mathrm{d}t_i$ are i

Usual Euler-Lagrange equations

$$
\begin{aligned}\n\text{ns:} \quad & \frac{\partial L_i}{\partial \mathbf{q}} - \frac{\mathrm{d}}{\mathrm{d}t_i} \frac{\partial L_i}{\partial \mathbf{q}_{t_i}} = 0 \\
?: \quad & \frac{\partial L_i}{\partial \mathbf{q}_{t_1}} = 0, \quad i \neq 1 \\
\text{ns:} \quad & \frac{\partial L_i}{\partial \mathbf{q}_{t_i}} = \frac{\partial L_j}{\partial \mathbf{q}_{t_i}}\n\end{aligned}
$$

Compatibility conditions

Example: Kepler Problem

Take $L_1 = \frac{1}{2}$ $\frac{1}{2}|\bm{q}_{t_1}|^2 + \frac{1}{|\bm{q}|}$ $|q|$ $L_2 = \boldsymbol{q}_{t_1} \cdot \boldsymbol{q}_{t_2} + (\boldsymbol{q}_{t_1} \times \boldsymbol{q}) \cdot \hat{\boldsymbol{\nu}}$ ($\hat{\boldsymbol{\nu}}$ fixed unit vector) In general: $L_i = \boldsymbol{q}_{t_1} \cdot \boldsymbol{q}_{t_i} - H_i(\boldsymbol{q}, \boldsymbol{q}_{t_1})$ Multi-time Euler-Lagrange equations of $\mathcal{L} = L_1 dt_1 + L_2 dt_2$ $\partial\mathsf{L}_1$ $\frac{\partial \mathbf{q}}{\partial \mathbf{q}}$ – d $\overline{\mathrm{d}t_1}$ $\partial\mathsf{L}_1$ $\frac{\partial L_1}{\partial \boldsymbol q_{t_1}} = 0 \quad \Rightarrow \quad \boldsymbol q_{t_1t_1} = -\frac{\boldsymbol q}{|\boldsymbol q|}$ $\frac{1}{|q|^3}$ (Keplerian motion) ∂L_2 $\frac{\partial \mathbf{L_z}}{\partial \mathbf{q}}$ – d $\overline{\mathrm{d}t_2}$ ∂L_2 $\frac{\partial Z_2}{\partial \boldsymbol{q}_{t_2}} = 0 \Rightarrow \boldsymbol{q}_{t_1t_2} = \hat{\boldsymbol{v}} \times \boldsymbol{q}_{t_1}$ ∂L_2 $\frac{\partial Z_2}{\partial \boldsymbol{q}_{t_1}} = 0 \Rightarrow \boldsymbol{q}_{t_2} = \boldsymbol{\hat{v}} \times \boldsymbol{q}$ (Rotation) $\partial\mathsf{L}_1$ $\frac{\partial L_1}{\partial \boldsymbol{q}_{t_1}} = \frac{\partial L_2}{\partial \boldsymbol{q}_{t_2}}$ $rac{\partial}{\partial \boldsymbol{q}_{t_2}} \Rightarrow \boldsymbol{q}_{t_1} = \boldsymbol{q}_{t_1}$

Derivation of the multi-time Euler-Lagrange equations

Consider a Lagrangian one-form $\mathcal{L} = \sum L_i[\bm{q}] \, \mathrm{d}t_i$, with i $L_1[q] = L_1(q, q_{t_1}),$ $L_i[\boldsymbol{q}] = L_i(\boldsymbol{q}, \boldsymbol{q}_{t_1}, \boldsymbol{q}_{t_i}), \quad i \neq 1$

Lemma

If the action $\int_{\Gamma} \mathcal{L}$ is critical on all stepped curves Γ in $\mathbb{R}^{\textsf{N}}$, then it is critical on all smooth curves.

Variations are local, so it is sufficient to look at an L-shaped curve $\Gamma = \Gamma_i \cup \Gamma_j$.

Derivation of the multi-time Euler-Lagrange equations

On one of the straight pieces, Γ_i ($i \neq 1$), we get

$$
\delta \int_{\Gamma_i} L_i dt_i = \int_{\Gamma_i} \left(\frac{\partial L_i}{\partial \mathbf{q}} \delta \mathbf{q} + \frac{\partial L_i}{\partial \mathbf{q}_{t_1}} \delta \mathbf{q}_{t_1} + \frac{\partial L_i}{\partial \mathbf{q}_{t_i}} \delta \mathbf{q}_{t_i} \right) dt_i
$$

Integration by parts (wrt t_i only) yields

$$
\delta \int_{\Gamma_i} L_i dt_i = \int_{\Gamma_i} \left(\left(\frac{\partial L_i}{\partial \mathbf{q}} - \frac{d}{dt_i} \frac{\partial L_i}{\partial \mathbf{q}_{t_i}} \right) \delta \mathbf{q} + \frac{\partial L_i}{\partial \mathbf{q}_{t_1}} \delta \mathbf{q}_{t_1} \right) dt_i + \frac{\partial L_i}{\partial \mathbf{q}_{t_i}} \delta \mathbf{q} \Big|_C
$$

Since *C* is an interior point of the curve, we cannot set $\delta \mathbf{q}(C) = 0!$

 t_i

 \mathcal{C}

 Γ_i Γ_j

 t_j

Arbitrary $\delta\bm{q}$ and $\delta\bm{q}_{t_1}$, so we find:

Higher order Lagranigans $L_i[\boldsymbol{q}] = L_i(\boldsymbol{q}, \boldsymbol{q}_{t_i}, \boldsymbol{q}_{t_i t_j}, \ldots)$

For a string $I = t_{i_1} \dots t_{i_k}$ of time variables, denote the corresponding derivative by \bm{q}_I

If *I* is empty then $\boldsymbol{q}_1 = \boldsymbol{q}$.

Denote by $\frac{\delta_i}{\delta_i}$ $\frac{\partial f}{\partial \mathbf{q}_I}$ the variational derivative in the direction of t_i wrt \mathbf{q}_I : δ_i Li $\frac{\delta_i L_i}{\delta q_l} = \sum_{\alpha=0}^{\infty}$ $\alpha = 0$ $(-1)^{\alpha} \frac{d^{\alpha}}{dt^{\alpha}}$ $\overline{\mathrm{d}t_i^\alpha}$ ∂Lⁱ $\partial \boldsymbol{q}_{lt_i^\alpha}$ $=\frac{\partial L_i}{\partial x}$ $\frac{\partial L_I}{\partial \bm{q}_I}$ – d $\overline{\mathrm{d}t_i}$ ∂Lⁱ $\frac{\partial L_{t}}{\partial \boldsymbol{q}_{lt_i}} +$ d^2 $\overline{{\rm d}t_i^2}$ i ∂Lⁱ $\frac{\partial \mathbf{L}_l}{\partial \mathbf{q}_{lt_i^2}} - \dots$ i

Multi-time Euler-Lagrange equations

Usual Euler-Lagrange equations: $\frac{\delta_i L_i}{s}$ $\frac{\partial I}{\partial \mathbf{q}_I} = 0 \qquad \forall I \not\ni t_i,$ Additional conditions: $\frac{\delta_i L_i}{s}$ $\frac{\delta_i L_i}{\delta \bm{q}_{lt_i}} = \frac{\delta_j L_j}{\delta \bm{q}_{lt}}$ $\frac{\partial f}{\partial \boldsymbol{q}_{lt_j}}$ $\forall l,$

Mats Vermeeren [A variational principle for integrable systems](#page-0-0) December, 2024 11/33

[Introduction](#page-4-0)

- (2) [Lagrangian 1-forms](#page-5-0) \rightarrow integrable ODEs
- (3) [Lagrangian 2-forms](#page-20-0) \rightarrow integrable PDEs
	- Exterior derivative and "double zeroes"
	- 5 [Semi-discrete Lagrangian multiforms](#page-0-1)
- 6 [Lagrangian multiforms on Lie groups](#page-0-1)

[Outlook](#page-0-1)

Variational principle for PDEs $(d = 2)$

Pluri-Lagrangian principle

Given a 2-form

$$
\mathcal{L}[q] = \sum_{i,j} L_{ij}[q] dt_i \wedge dt_j,
$$

find a field $q : \mathbb{R}^N \to \mathbb{R}$, such that $\overline{}$ Γ $\mathcal{L}[q]$ is critical on all smooth surfaces Γ in multi-time \mathbb{R}^N , w.r.t. variations of q

Multi-time EL equations

$$
\text{for }\mathcal{L}[q] = \sum_{i,j} L_{ij}[q] \, \mathrm{d} t_i \wedge \mathrm{d} t_j
$$

$$
\begin{aligned}\n\frac{\delta_{ij}L_{ij}}{\delta q_l} &= 0 & \forall I \not\ni t_i, t_j, \\
\frac{\delta_{ij}L_{ij}}{\delta q_{lt_j}} &= \frac{\delta_{ik}L_{ik}}{\delta q_{lt_k}} & \forall I \not\ni t_i, \\
\frac{\delta_{ij}L_{ij}}{\delta q_{lt_i t_j}} + \frac{\delta_{jk}L_{jk}}{\delta q_{lt_j t_k}} + \frac{\delta_{ki}L_{ki}}{\delta q_{lt_k t_i}} &= 0 & \forall I.\n\end{aligned}
$$

Where

$$
\frac{\delta_{ij}L_{ij}}{\delta q_I} = \sum_{\alpha=0}^{\infty} \sum_{\beta=0}^{\infty} (-1)^{\alpha+\beta} \frac{d^{\alpha}}{dt_i^{\alpha}} \frac{d^{\beta}}{dt_j^{\beta}} \frac{\partial L_{ij}}{\partial q_{lt_i^{\alpha}t_j^{\beta}}}
$$

Example: Potential KdV hierarchy

$$
q_{t_2} = q_{xxx} + 3q_x^2,
$$

\n
$$
q_{t_3} = q_{xxxxx} + 10q_xq_{xxx} + 5q_{xx}^2 + 10q_x^3,
$$

\nwhere we identify $t_1 = x$

The differentiated equations $q_{\mathsf{x}t_i} = \frac{\mathrm{d}}{\mathrm{d} \mathsf{y}}$ $\frac{\mathrm{d}}{\mathrm{d} \mathrm{x}} (\cdots)$ are Lagrangian with

$$
L_{12} = \frac{1}{2} q_x q_{t_2} - \frac{1}{2} q_x q_{xxx} - q_x^3,
$$

$$
L_{13} = \frac{1}{2} q_x q_{t_3} - \frac{1}{2} q_{xxx}^2 + 5 q_x q_{xx}^2 - \frac{5}{2} q_x^4.
$$

A suitable coefficient L_{23} of

 $\mathcal{L} = L_{12} dt_1 \wedge dt_2 + L_{13} dt_1 \wedge dt_3 + L_{23} dt_2 \wedge dt_3$ can be found (nontrivial task!).

Example: Potential KdV hierarchy

$$
\sum \text{The equations } \frac{\delta_{12}L_{12}}{\delta q} = 0 \text{ and } \frac{\delta_{13}L_{13}}{\delta q} = 0 \text{ yield}
$$
\n
$$
q_{xt_2} = \frac{d}{dx} (q_{xxx} + 3q_x^2),
$$
\n
$$
q_{xt_3} = \frac{d}{dx} (q_{xxxxx} + 10q_x q_{xxx} + 5q_{xx}^2 + 10q_x^3).
$$

$$
\sum \text{ The equations } \frac{\delta_{12}L_{12}}{\delta q_x} = \frac{\delta_{32}L_{32}}{\delta q_{t_3}} \text{ and } \frac{\delta_{13}L_{13}}{\delta q_x} = \frac{\delta_{23}L_{23}}{\delta q_{t_2}} \text{ yield}
$$
\n
$$
q_{t_2} = q_{xxx} + 3q_x^2,
$$
\n
$$
q_{t_3} = q_{xxxxx} + 10q_xq_{xxx} + 5q_{xx}^2 + 10q_x^3,
$$

the evolutionary equations!

▶ All other multi-time EL equations are corollaries of these.

Hamiltonian structure

Set
$$
p[q] = \frac{\delta_1 L_{1j}}{\delta q_j}
$$
 (independent of j), then $L_{1j} = p[q]q_j - h_j[q]$
\n
$$
0 = \frac{\delta_1 L_{1j}}{\delta q} = \underbrace{\sum_k \left((-1)^k \partial_x^k \frac{\partial p[q]}{\partial q_{x^k}} - \frac{\partial p[q]}{\partial q_{x^k}} \partial_x^k \right)}_{\mathcal{E}_p} q_j - \frac{\delta h_j}{\delta q}
$$

Then, $q_j = \mathcal{E}_{\bm p}^{-1} \frac{\delta h_j}{\delta \bm q}$ $\frac{\delta H_j}{\delta q}$, so h_j are Hamiltonians wrt the Poisson bracket

$$
\{ \int f \, dx, \int g \, dx \} = - \int \frac{\delta f}{\delta q} \mathcal{E}_p^{-1} \frac{\delta g}{\delta q} \, dx
$$

Example: potential KdV

$$
p[q] = \frac{1}{2}q_x, \quad \mathcal{E}_p = -\partial_x, \quad \{ \int f \, dx, \int g \, dx \} = \int \frac{\delta f}{\delta q} \partial_x^{-1} \frac{\delta g}{\delta q} \, dx
$$

In the KdV variable $u = q_x$, this becomes

$$
\{ \int f \, dx, \int g \, dx \} = \int \left(\partial_x \frac{\delta f}{\delta u} \right) \frac{\delta g}{\delta u} \, dx
$$

[Introduction](#page-4-0)

- (2) [Lagrangian 1-forms](#page-5-0) \rightarrow integrable ODEs
- (3) [Lagrangian 2-forms](#page-20-0) \rightarrow integrable PDEs
- 4 Exterior derivative and "double zeroes"
	- 5 [Semi-discrete Lagrangian multiforms](#page-0-1)
- 6 [Lagrangian multiforms on Lie groups](#page-0-1)

[Outlook](#page-0-1)

Exterior derivative of \mathcal{L}

Revisit the Kepler problem: $\mathcal{L} = L_1 dt_1 + L_2 dt_2$ with

$$
L_1[\mathbf{q}] = \frac{1}{2} |\mathbf{q}_{t_1}|^2 + \frac{1}{|\mathbf{q}|}
$$

\n
$$
L_2[\mathbf{q}] = \mathbf{q}_{t_1} \cdot \mathbf{q}_{t_2} + (\mathbf{q}_{t_1} \times \mathbf{q}) \cdot \hat{\mathbf{v}} \qquad (\hat{\mathbf{v}} \text{ fixed unit vector})
$$

Multi-time Euler-Lagrange equations:

$$
\boldsymbol{q}_{t_1t_1} = -\frac{\boldsymbol{q}}{|\boldsymbol{q}|^3} \qquad \qquad \boldsymbol{q}_{t_2} = \hat{\boldsymbol{v}} \times \boldsymbol{q}
$$

 $Coefficient of dC$

$$
\frac{\mathrm{d}L_2}{\mathrm{d}t_1} - \frac{\mathrm{d}L_1}{\mathrm{d}t_2} = \left(\boldsymbol{q}_{t_1t_1} + \frac{\boldsymbol{q}}{|\boldsymbol{q}|^3}\right) \cdot \left(\boldsymbol{q}_{t_2} - \hat{\boldsymbol{v}} \times \boldsymbol{q}\right)
$$

Observation: $d\mathcal{L}$ typically has a "double zero" on solutions.

Interpretation of closedness condition I

If $d\mathcal{L} = 0$, the action is invariant wrt variations in geometry

Lagrangian multiform principle

Require that

- \blacktriangleright pluri-Lagrangian principle holds (variations of \bm{q}),
- ▶ deforming the curve of integration leaves action invariant.

Interpretation of closedness condition II

 $d\mathcal{L}$ provides an alternative derivation of the EL equations:

WLOG, we can restrict the variational principle to simple closed curves, i.e. boundaries of a surface D.

Then

$$
\delta\int_{\partial D}{\cal L}=-\int_D\delta{\rm d}{\cal L},
$$

hence the pluri-Lagrangian principle is equivalent to $\delta {\rm d}\mathcal{L}=0.$

If $d\mathcal{L}$ has a double zero on a set of equations $E_1 = 0, E_2 = 0, \ldots$,

$$
\mathrm{d}\mathcal{L}=\sum_{i,j}E_iE_j\,\mathrm{d}t_i\wedge\mathrm{d}t_j
$$

or

$$
\mathrm{d}\mathcal{L} = \sum_{i,j} \bigg(\sum_{\alpha,\beta} c_{\alpha,\beta}^{i,j} E_{\alpha} E_{\beta} \bigg) \mathrm{d} t_i \wedge \mathrm{d} t_j,
$$

then **q** is critical if $E_1 = 0$, $E_2 = 0$, ...

[Introduction](#page-4-0)

- (2) [Lagrangian 1-forms](#page-5-0) \rightarrow integrable ODEs
- (3) [Lagrangian 2-forms](#page-20-0) \rightarrow integrable PDEs
	- Exterior derivative and "double zeroes"
- 5 [Semi-discrete Lagrangian multiforms](#page-0-1)
- 6 [Lagrangian multiforms on Lie groups](#page-0-1)

[Outlook](#page-0-1)

Semi-discrete systems

Consider particles on a line: 1 discrete dimension, many continuous times

Denote $\quad q_1 = q_{t_1} = \frac{\mathrm{d} q}{\mathrm{d} t_1}$ $\frac{\mathrm{d} \boldsymbol{q}}{\mathrm{d} t_1}, \hspace{5mm} \boldsymbol{q}_{11} = \boldsymbol{q}_{t_1t_1} = \frac{\mathrm{d}^2 \boldsymbol{q}}{\mathrm{d} t_1^2}$ $\frac{d-q}{dt_1^2}$, etc.

Toda lattice: exponential nearest-neighbour interaction

$$
q_{11}=\exp(\bar{q}-q)-\exp(q-\underline{q}).
$$

Part of a hierarchy. First symmetry:

$$
q_2=q_1^2+\exp(\bar{q}-q)+\exp(q-\underline{q})
$$

Semi-discrete geometry

Consider the case with only 1 discrete direction: $\mathbb{Z}\times\mathbb{R}^{\sf{\small{N}}}$

A semi-discrete surface is a collection of surfaces and curves in $\mathbb{R}^{\textit{N}}$, each at a specified point in \Z

Intuition: curves where the surface jumps to a different value of $\mathbb Z$

Semi-discrete geometry

- \blacktriangleright Consider (scalar) functions q of $\mathbb{Z}\times\mathbb{R}^N$. Superscript to emphasise lattice position: $\,q^{[k]}=q(k,t_1,\ldots,t_\mathsf{N})\,$
- ▶ Semi-discrete 2-form $\mathcal{L}[q]$ is part 1-form and part 2-form: components L_{0i} are integrated over curves, components L_{ii} integrated over surfaces.
- \triangleright We have semi-discrete versions of the exterior derivative, the boundary, and Stokes theorem

Variational principle

Look for $q(k, t_1, \ldots, t_N)$ such that the action

is critical w.r.t. variations of q, simultaneously over every semi-discrete surface Γ.

Z Γ $\mathcal{L}[q]$

Toda lattice

Lagrangians ("0" for discrete direction)

$$
\begin{aligned} L_{01} &= \frac{1}{2}q_1^2 - \exp(\bar{q}-q) \\ L_{02} &= q_1 q_2 - \frac{1}{3}q_1^3 - (q_1 + \bar{q}_1) \exp(\bar{q}-q) \\ L_{12} &= -\frac{1}{4} \left(q_2 - q_{11} - q_1^2 \right)^2 \end{aligned}
$$

Euler-Lagrange equations:

$$
\frac{\delta_{01}L_{01}}{\delta q} = 0 \qquad \rightarrow \qquad q_{11} = \exp(\bar{q} - q) - \exp(q - \underline{q})
$$
\n
$$
\frac{\delta_{02}L_{02}}{\delta q_1} = 0 \qquad \rightarrow \qquad q_2 = q_1^2 + \exp(\bar{q} - q) + \exp(q - \underline{q})
$$
\n
$$
\frac{\delta_{12}L_{12}}{\delta q} = 0 \qquad \rightarrow \qquad \frac{1}{2}q_{22} - q_{11}q_2 - 2q_{12}q_1 - \frac{1}{2}q_{1111} + 3q_1^2q_{11} = 0
$$

Lagrangian formalism produces a non-trivial PDE at a single lattice site.

[Introduction](#page-4-0)

- (2) [Lagrangian 1-forms](#page-5-0) \rightarrow integrable ODEs
- (3) [Lagrangian 2-forms](#page-20-0) \rightarrow integrable PDEs
- Exterior derivative and "double zeroes"
- 5 [Semi-discrete Lagrangian multiforms](#page-0-1)
- 6 [Lagrangian multiforms on Lie groups](#page-0-1)

[Outlook](#page-0-1)

Non-commuting flows

What if symmetries that do not commute with each other?

euclidean multi-time	\rightarrow	Lie group
$\frac{\partial}{\partial t_i}$	\rightarrow	Lie algebra element ξ
infinitesimal generator ∂_{ξ} of its action		

The relation between Poisson brackets and $d\mathcal{L}$ becomes

$$
\{H_{\xi},H_{\nu}\}=H_{[\xi,\nu]}+\partial_{\xi}\lrcorner\partial_{\nu}\lrcorner\mathrm{d}\mathcal{L}+(\text{EL eqs})^2,
$$

where H_{ξ} is the Hamiltonian of ∂_{ξ}

Hence $d\mathcal{L} = 0$ encodes the Lie algebra structure.

Example: rotation group for central force system Multi-time: $\mathbb{R} \times SO(3)$, generators $\xi_0 (= \frac{\partial}{\partial t}), \xi_1, \xi_2, \xi_3$ with $[\xi_1, \xi_2] = \xi_3$ (and cyclic permutations of 1,2,3)

Lagrangian 1-form defined by

$$
L_0 = \partial_{\xi_0} \lrcorner \mathcal{L} = \frac{1}{2} |\boldsymbol{q}_0|^2 - V(|\boldsymbol{q}|)
$$

\n
$$
L_i = \partial_{\xi_1} \lrcorner \mathcal{L} = \boldsymbol{q}_0 \cdot \boldsymbol{q}_i - (\boldsymbol{q} \times \boldsymbol{q}_0) \cdot \boldsymbol{e}_i \quad \text{for } i = 1, 2, 3
$$

Multi-time Euler-Lagrange equations:

$$
\boldsymbol{q}_{00} = -\boldsymbol{\nabla} V(|\boldsymbol{q}|) \qquad \boldsymbol{q}_i = \boldsymbol{e}_i \times \boldsymbol{q}
$$

Closure relation:

$$
\partial_{\xi_i}\lrcorner\partial_{\xi_j}\lrcorner\mathrm{d}\mathcal{L}=\partial_{\xi_i}L_j-\partial_{\xi_j}L_i-[\partial_{\xi_i},\partial_{\xi_j}]\lrcorner\mathcal{L}
$$
\n
$$
=(\mathbf{q}_{0i}-\mathbf{e}_i\times\mathbf{q}_0)\cdot(\mathbf{q}_j-\mathbf{e}_j\times\mathbf{q})
$$
\n
$$
-(\mathbf{q}_{0j}-\mathbf{e}_j\times\mathbf{q}_0)\cdot(\mathbf{q}_i-\mathbf{e}_i\times\mathbf{q})=0
$$

Is multi-time always a Lie group?

If

$$
\{H_i, H_j\} = \sum_k C_{ij}^k H_k,
$$

then yes:

$$
[X_{H_i}, X_{H_j}] = \sum_k C_{ij}^k H_k
$$

Example: Kepler problem with angular momentum ℓ and Runge-Lenz vector **A**. We have $\{H, \cdot\} = 0$ and

$$
\{\ell_i,\ell_j\}=-\epsilon_{ijk}\ell_k, \qquad \{A_i,\ell_j\}=-\epsilon_{ijk}A_k, \qquad \{A_i,A_j\}=2\epsilon_{ijk}H\ell_k
$$

can be linearised by setting $\widetilde{\cal A}=\frac{\bar{\cal A}}{\sqrt{-2\bar{\cal H}}}.$

$$
\{\ell_i,\ell_j\}=-\epsilon_{ijk}\ell_k\,,\qquad \{\widetilde{A}_i,\ell_j\}=-\epsilon_{ijk}\widetilde{A}_k\,,\qquad \{\widetilde{A}_i,\widetilde{A}_j\}=-\epsilon_{ijk}\ell_k
$$

When linearisation is not possible, we think multi-time should be a Lie groupoid. (Details have not been worked out!)

Mats Vermeeren [A variational principle for integrable systems](#page-0-0) December, 2024 30 / 33

[Introduction](#page-4-0)

- (2) [Lagrangian 1-forms](#page-5-0) \rightarrow integrable ODEs
- (3) [Lagrangian 2-forms](#page-20-0) \rightarrow integrable PDEs
- Exterior derivative and "double zeroes"
- 5 [Semi-discrete Lagrangian multiforms](#page-0-1)
- 6 [Lagrangian multiforms on Lie groups](#page-0-1)
	- **[Outlook](#page-0-1)**

Summary

Lagrangian multiform (or pluri-Lagrangian) provides a unified perspective on integrable* ODEs and PDEs, discrete, semi-discrete and continuous.

*or Lagrangian systems with any amount of symmetry

Much work to do:

- ▶ Geometry of multi-time for general superintegrable systems?
- Multiforms as a tool for constructing solutions?
- Full development of semi-discrete case?
- ▶ Semi-discrete multiforms in geometric numerical integration?
- ▶ Applications to gauge theory?
- ▶ Application to quantum integrable systems, path integrals, ...?

Selected references

First Lagrangian multiform paper (discrete 2-forms): S Lobb, F Nijhoff. Lagrangian multiforms and multidimensional consistency. J Phys A, 2009.

- Discrete and continuous 1-forms: Yu Suris. Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms. J Geom Mech, 2013
- Continuous 2-forms: Yu Suris, MV. On the Lagrangian structure of integrable hierarchies. In: Advances in Discrete Differential Geometry, Springer, 2016.
- Connections between Hamiltonian and Lagrangian perspectives: MV. Hamiltonian structures for integrable hierarchies of Lagrangian PDEs. OCNMP, 2021.
- Semi-discrete Lagrangian multiforms: D Sleigh, MV. Semi-discrete Lagrangian 2-forms and the Toda hierarchy. J Phys A, 2022.
- Non-commuting flows: V Caudrelier, F Nijhoff, D sleigh, MV. Lagrangian multiforms on Lie groups and non-commuting flows. J Geom Phys, 2023
- Connection to r-matrices V Caudrelier, M Dell'Atti, A Singh. Lagrangian multiforms on coadjoint orbits for finite-dimensional integrable systems. LMP 2024
- Classification with multiforms T Kongkoom, FW Nijhoff, S Yoo-Kong. Lagrangian 1-form structure of Calogero-Moser type systems. arXiv:2410.15773