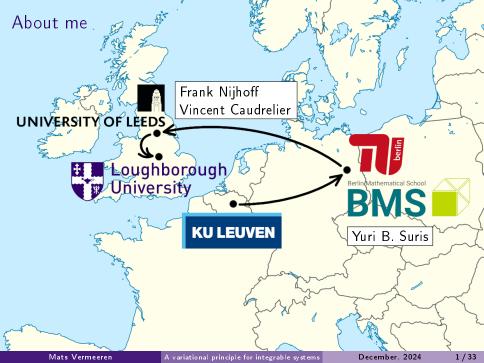
A variational principle for integrable systems

Mats Vermeeren

Milano

December, 2024



- Introduction
- ullet Lagrangian 1-forms o integrable ODEs
- 3 Lagrangian 2-forms \rightarrow integrable PDEs
- Exterior derivative and "double zeroes"
- 5 Semi-discrete Lagrangian multiforms
- 6 Lagrangian multiforms on Lie groups
- Outlook

- Introduction
- 2 Lagrangian 1-forms \rightarrow integrable ODEs
- 3 Lagrangian 2-forms → integrable PDEs
- 4 Exterior derivative and "double zeroes"
- 5 Semi-discrete Lagrangian multiforms
- 6 Lagrangian multiforms on Lie groups
- Outlook

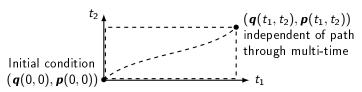
Liouville integrability

A Hamiltonian system with Hamilton function $H: T^*Q \cong \mathbb{R}^{2N} \to \mathbb{R}$ is Liouville integrable if there exist N functionally independent Hamilton functions $H = H_1, H_2, \ldots H_N$ such that $\{H_i, H_j\} = 0$.

- **Each** H_i defines its own flow $\phi_{H_i}^t$: N dynamical systems
- The flows commute: $\phi_{H_i}^{t_i} \circ \phi_{H_j}^{t_j} = \phi_{H_j}^{s_j} \circ \phi_{H_i}^{t_i}$. (Infinitesimally: $[X_{H_i}, X_{H_i}] = 0$.)

We can consider $({m q},{m p})$ as a function of multi-time, $\mathbb{R}^N o T^*Q$:

$$(t_1,\ldots,t_N)\mapsto(\boldsymbol{q}(t_1,\ldots,t_N),\boldsymbol{p}(t_1,\ldots,t_N))$$



Lagrangian mechanics

Lagrange function $L: TQ \cong \mathbb{R}^{2N} \to \mathbb{R}: (\boldsymbol{q}, \boldsymbol{q}_t) \mapsto L(\boldsymbol{q}, \boldsymbol{q}_t)$

Dynamics follows curves which are minimizers (critical points) of the action

$$\int_a^b L(\boldsymbol{q}, \boldsymbol{q}_t) dt \qquad \text{with fixed boundary values } \boldsymbol{q}(a) \text{ and } \boldsymbol{q}(b).$$

Minimizers satisfy the Euler-Lagrange (EL) equation $\frac{\partial L}{\partial \boldsymbol{q}} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \boldsymbol{q}_t} = 0$

Proof. Consider an arbitrary variation $\delta {\it q}$:

$$\delta \int_{a}^{b} L \, dt = \int_{a}^{b} \left(\frac{\partial L}{\partial \boldsymbol{q}} \delta \boldsymbol{q} + \frac{\partial L}{\partial \boldsymbol{q}_{t}} \delta \boldsymbol{q}_{t} \right) dt$$

Integration by parts yields

$$\delta \int_{a}^{b} L \, \mathrm{d}t = \int_{a}^{b} \left(\frac{\partial L}{\partial \boldsymbol{q}} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \boldsymbol{q}_{t}} \right) \delta \boldsymbol{q} \, \mathrm{d}t + \left[\frac{\partial L}{\partial \boldsymbol{q}_{t}} \delta \boldsymbol{q} \right]_{a}^{b}$$

EL follows because $\delta \mathbf{q}(a) = \delta \mathbf{q}(b) = 0$ and $\delta \mathbf{q}$ is arbitrary inside (a, b).

Lagrangian formulation of Liouville integrable system

Suppose we have Lagrange functions L_i associated to H_i . Consider

$$oldsymbol{q}: \mathbb{R}^{oldsymbol{N}}
ightarrow Q$$
 (multi-time to configuration space)

Variational ("Pluri-Lagrangian") principle for ODEs

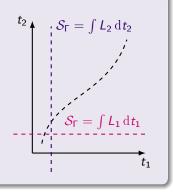
Combine the L_i into a 1-form

$$\mathcal{L}[\boldsymbol{q}] = \sum_{i=1}^{N} L_i[\boldsymbol{q}] \, \mathrm{d} t_i.$$

Look for $\boldsymbol{q}(t_1,\ldots,t_N)$ such that the action

$$\mathcal{S}_{\mathsf{\Gamma}} = \int_{\mathsf{\Gamma}} \mathcal{L}[m{q}]$$

is critical w.r.t. variations of q, simultaneously over every curve Γ in multi-time \mathbb{R}^N



Lagrangian multiform principle: the action is the same for all curves.

Multi-time Euler-Lagrange equations

Assume that

$$L_1[q] = L_1(q, q_{t_1}),$$

 $L_i[q] = L_i(q, q_{t_1}, q_{t_i}), i \neq 1$

The multi-time Euler-Lagrange equations for $\mathcal{L} = \sum_i \overline{L_i}[m{q}] \, \mathrm{d}t_i$ are

Usual Euler-Lagrange equations:
$$\frac{\partial L_i}{\partial \boldsymbol{q}} - \frac{\mathrm{d}}{\mathrm{d}t_i} \frac{\partial L_i}{\partial \boldsymbol{q}_{t_i}} = 0$$
 ? :
$$\frac{\partial L_i}{\partial \boldsymbol{q}_{t_1}} = 0, \quad i \neq 1$$
 Compatibility conditions:
$$\frac{\partial L_i}{\partial \boldsymbol{q}_{t_i}} = \frac{\partial L_j}{\partial \boldsymbol{q}_{t_i}}$$

Example: Kepler Problem

$$egin{aligned} L_1 &= rac{1}{2} |oldsymbol{q}_{t_1}|^2 + rac{1}{|oldsymbol{q}|} \ L_2 &= oldsymbol{q}_{t_1} \cdot oldsymbol{q}_{t_2} + (oldsymbol{q}_{t_1} imes oldsymbol{q}) \cdot \hat{oldsymbol{v}} \end{aligned} \qquad ext{($\hat{oldsymbol{v}}$ fixed unit vector)}$$

In general: $L_i = \boldsymbol{q}_{t_1} \cdot \boldsymbol{q}_{t_i} - H_i(\boldsymbol{q}, \boldsymbol{q}_{t_1})$

Multi-time Euler-Lagrange equations of $\mathcal{L} = L_1 \mathrm{d}\, t_1 + L_2 \mathrm{d}\, t_2$

$$\begin{split} \frac{\partial L_1}{\partial \boldsymbol{q}} - \frac{\mathrm{d}}{\mathrm{d}t_1} \frac{\partial L_1}{\partial \boldsymbol{q}_{t_1}} &= 0 \quad \Rightarrow \quad \boldsymbol{q}_{t_1t_1} = -\frac{\boldsymbol{q}}{|\boldsymbol{q}|^3} \qquad \text{(Keplerian motion)} \\ \frac{\partial L_2}{\partial \boldsymbol{q}} - \frac{\mathrm{d}}{\mathrm{d}t_2} \frac{\partial L_2}{\partial \boldsymbol{q}_{t_2}} &= 0 \quad \Rightarrow \quad \boldsymbol{q}_{t_1t_2} &= \hat{\boldsymbol{v}} \times \boldsymbol{q}_{t_1} \\ \frac{\partial L_2}{\partial \boldsymbol{q}_{t_1}} &= 0 \quad \Rightarrow \quad \boldsymbol{q}_{t_2} &= \hat{\boldsymbol{v}} \times \boldsymbol{q} \qquad \text{(Rotation)} \\ \frac{\partial L_1}{\partial \boldsymbol{q}_{t_1}} &= \frac{\partial L_2}{\partial \boldsymbol{q}_{t_2}} \quad \Rightarrow \quad \boldsymbol{q}_{t_1} &= \boldsymbol{q}_{t_1} \end{split}$$

Derivation of the multi-time Euler-Lagrange equations

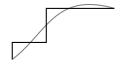
Consider a Lagrangian one-form $\mathcal{L} = \sum_i L_i[m{q}] \, \mathrm{d}t_i$, with

$$L_1[q] = L_1(q, q_{t_1}),$$

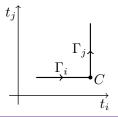
 $L_i[q] = L_i(q, q_{t_1}, q_{t_i}), i \neq 1$

Lemma

If the action $\int_{\Gamma} \mathcal{L}$ is critical on all stepped curves Γ in \mathbb{R}^N , then it is critical on all smooth curves.



Variations are local, so it is sufficient to look at an L-shaped curve $\Gamma = \Gamma_i \cup \Gamma_j$.



Derivation of the multi-time Euler-Lagrange equations

On one of the straight pieces, Γ_i ($i \neq 1$), we get

$$\delta \int_{\Gamma_i} L_i \, \mathrm{d}t_i = \int_{\Gamma_i} \left(\frac{\partial L_i}{\partial \boldsymbol{q}} \delta \boldsymbol{q} + \frac{\partial L_i}{\partial \boldsymbol{q}_{t_1}} \delta \boldsymbol{q}_{t_1} + \frac{\partial L_i}{\partial \boldsymbol{q}_{t_i}} \delta \boldsymbol{q}_{t_i} \right) \mathrm{d}t_i$$

$$\Gamma_j$$

Integration by parts (wrt t_i only) yields

$$\delta \int_{\Gamma_i} L_i \, \mathrm{d}t_i = \int_{\Gamma_i} \left(\left(\frac{\partial L_i}{\partial \boldsymbol{q}} - \frac{\mathrm{d}}{\mathrm{d}t_i} \frac{\partial L_i}{\partial \boldsymbol{q}_{t_i}} \right) \delta \boldsymbol{q} + \frac{\partial L_i}{\partial \boldsymbol{q}_{t_1}} \delta \boldsymbol{q}_{t_1} \right) \mathrm{d}t_i + \frac{\partial L_i}{\partial \boldsymbol{q}_{t_i}} \delta \boldsymbol{q} \bigg|_{C}$$

Since C is an interior point of the curve, we cannot set $\delta q(C) = 0!$

Arbitrary $\delta \boldsymbol{q}$ and $\delta \boldsymbol{q}_{t_1}$, so we find:

Multi-time Euler-Lagrange equations

$$\frac{\partial L_i}{\partial \boldsymbol{q}} - \frac{\mathrm{d}}{\mathrm{d}t_i} \frac{\partial L_i}{\partial \boldsymbol{q}_{t_i}} = 0, \qquad \frac{\partial L_i}{\partial \boldsymbol{q}_{t_1}} = 0, \qquad \frac{\partial L_i}{\partial \boldsymbol{q}_{t_i}} = \frac{\partial L_j}{\partial \boldsymbol{q}_{t_i}}$$

Higher order Lagranigans $L_i[\boldsymbol{q}] = L_i(\boldsymbol{q}, \boldsymbol{q}_{t_i}, \boldsymbol{q}_{t_it_i}, \ldots)$

For a string $I = t_{i_1} \dots t_{i_k}$ of time variables, denote the corresponding derivative by q_I .

If I is empty then $\mathbf{q}_I = \mathbf{q}$.

Denote by $\frac{\delta_i}{\delta \mathbf{q}_I}$ the variational derivative in the direction of t_i wrt \mathbf{q}_I :

$$\frac{\delta_{i}L_{i}}{\delta q_{I}} = \sum_{\alpha=0}^{\infty} (-1)^{\alpha} \frac{\mathrm{d}^{\alpha}}{\mathrm{d}t_{i}^{\alpha}} \frac{\partial L_{i}}{\partial \boldsymbol{q}_{It_{i}^{\alpha}}}
= \frac{\partial L_{i}}{\partial \boldsymbol{q}_{I}} - \frac{\mathrm{d}}{\mathrm{d}t_{i}} \frac{\partial L_{i}}{\partial \boldsymbol{q}_{It_{i}}} + \frac{\mathrm{d}^{2}}{\mathrm{d}t_{i}^{2}} \frac{\partial L_{i}}{\partial \boldsymbol{q}_{It_{i}^{2}}} - \dots$$

Multi-time Euler-Lagrange equations

Usual Euler-Lagrange equations:
$$\frac{\delta_i L_i}{\delta {m q}_I} = 0$$
 $orall I
ot
otag t_i,$

Additional conditions:
$$\frac{\delta_i L_i}{\delta \boldsymbol{q}_{It_i}} = \frac{\delta_j L_j}{\delta \boldsymbol{q}_{It_i}}$$
 $\forall I$,

$$\frac{\delta_i L_i}{\delta \boldsymbol{q}_{tt}} = \frac{\delta_j L_j}{\delta \boldsymbol{q}_{tt}}$$

$$\forall I,$$

- Introduction
- ullet Lagrangian 1-forms o integrable ODEs
- \odot Lagrangian 2-forms \rightarrow integrable PDEs
- 4 Exterior derivative and "double zeroes"
- 5 Semi-discrete Lagrangian multiforms
- 6 Lagrangian multiforms on Lie groups
- Outlook

Variational principle for PDEs (d = 2)

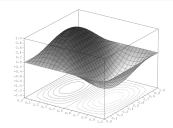
Pluri-Lagrangian principle

Given a 2-form

$$\mathcal{L}[q] = \sum_{i,j} L_{ij}[q] \, \mathrm{d} t_i \wedge \mathrm{d} t_j,$$

find a field $q: \mathbb{R}^N \to \mathbb{R}$, such that $\int_{\Gamma} \mathcal{L}[q]$ is critical on all smooth surfaces Γ in multi-time \mathbb{R}^N , w.r.t. variations of q.





Multi-time EL equations

for
$$\mathcal{L}[q] = \sum_{i,j} L_{ij}[q] \, \mathrm{d}t_i \wedge \mathrm{d}t_j$$

$$\frac{\delta_{ij}L_{ij}}{\delta q_{I}} = 0 \qquad \forall I \not\ni t_{i}, t_{j},
\frac{\delta_{ij}L_{ij}}{\delta q_{It_{j}}} = \frac{\delta_{ik}L_{ik}}{\delta q_{It_{k}}} \qquad \forall I \not\ni t_{i},
\frac{\delta_{ij}L_{ij}}{\delta q_{It_{i}t_{j}}} + \frac{\delta_{jk}L_{jk}}{\delta q_{It_{j}t_{k}}} + \frac{\delta_{ki}L_{ki}}{\delta q_{It_{k}t_{i}}} = 0 \qquad \forall I.$$

Where

$$\frac{\delta_{ij}L_{ij}}{\delta q_I} = \sum_{\alpha=0}^{\infty} \sum_{\beta=0}^{\infty} (-1)^{\alpha+\beta} \frac{\mathrm{d}^{\alpha}}{\mathrm{d}t_i^{\alpha}} \frac{\mathrm{d}^{\beta}}{\mathrm{d}t_j^{\beta}} \frac{\partial L_{ij}}{\partial q_{lt_i^{\alpha}t_j^{\beta}}}$$

Example: Potential KdV hierarchy

$$q_{t_2} = q_{xxx} + 3q_x^2,$$
 $q_{t_3} = q_{xxxx} + 10q_xq_{xxx} + 5q_{xx}^2 + 10q_x^3,$ where we identify $t_1 = x$.

The differentiated equations $q_{\mathsf{x}t_i} = rac{\mathrm{d}}{\mathrm{d}\mathsf{x}}(\cdots)$ are Lagrangian with

$$L_{12} = \frac{1}{2} q_{x} q_{t_{2}} - \frac{1}{2} q_{x} q_{xxx} - q_{x}^{3},$$

$$L_{13} = \frac{1}{2} q_{x} q_{t_{3}} - \frac{1}{2} q_{xxx}^{2} + 5 q_{x} q_{xx}^{2} - \frac{5}{2} q_{x}^{4}.$$

A suitable coefficient L_{23} of

$$\mathcal{L} = \mathcal{L}_{12} \operatorname{d} t_1 \wedge \operatorname{d} t_2 + \mathcal{L}_{13} \operatorname{d} t_1 \wedge \operatorname{d} t_3 + \mathcal{L}_{23} \operatorname{d} t_2 \wedge \operatorname{d} t_3$$

can be found (nontrivial task!).

Example: Potential KdV hierarchy

The equations $\frac{\delta_{12}L_{12}}{\delta q}=0$ and $\frac{\delta_{13}L_{13}}{\delta q}=0$ yield $q_{xt_2}=\frac{\mathrm{d}}{\mathrm{d}x}\left(q_{xxx}+3q_x^2\right),$ $q_{xt_3}=\frac{\mathrm{d}}{\mathrm{d}x}\left(q_{xxxx}+10q_xq_{xxx}+5q_{xx}^2+10q_x^3\right).$

► The equations
$$\frac{\delta_{12}L_{12}}{\delta q_x} = \frac{\delta_{32}L_{32}}{\delta q_{t_3}}$$
 and $\frac{\delta_{13}L_{13}}{\delta q_x} = \frac{\delta_{23}L_{23}}{\delta q_{t_2}}$ yield $q_{t_2} = q_{\text{xxx}} + 3q_x^2,$ $q_{t_3} = q_{\text{xxxx}} + 10q_xq_{\text{xxx}} + 5q_{\text{xx}}^2 + 10q_x^3,$

the evolutionary equations!

► All other multi-time EL equations are corollaries of these.

Hamiltonian structure

Set
$$p[q] = \frac{\delta_1 L_{1j}}{\delta q_j}$$
 (independent of j), then $L_{1j} = p[q]q_j - h_j[q]$

$$0 = \frac{\delta_1 L_{1j}}{\delta q} = \underbrace{\sum_k \left((-1)^k \partial_x^k \frac{\partial p[q]}{\partial q_{x^k}} - \frac{\partial p[q]}{\partial q_{x^k}} \partial_x^k \right)}_{\mathcal{E}_p} q_j - \frac{\delta h_j}{\delta q}$$

Then, $q_j=\mathcal{E}_p^{-1}rac{\delta h_j}{\delta q}$, so h_j are Hamiltonians wrt the Poisson bracket

$$\{\int f \, \mathrm{d}x, \int g \, \mathrm{d}x\} = -\int \frac{\delta f}{\delta q} \mathcal{E}_p^{-1} \frac{\delta g}{\delta q} \, \mathrm{d}x$$

Example: potential KdV

$$p[q] = \frac{1}{2} q_x, \qquad \mathcal{E}_p = -\partial_x, \qquad \{ \int f \, \mathrm{d} x, \int g \, \mathrm{d} x \} = \int \frac{\delta f}{\delta q} \partial_x^{-1} \frac{\delta g}{\delta q} \, \mathrm{d} x$$

In the KdV variable $u = q_x$, this becomes

$$\{\int f \, \mathrm{d}x, \int g \, \mathrm{d}x\} = \int \left(\partial_x \frac{\delta f}{\delta u}\right) \frac{\delta g}{\delta u} \, \mathrm{d}x$$

- Introduction
- ullet Lagrangian 1-forms o integrable ODEs
- 3 Lagrangian 2-forms → integrable PDEs
- Exterior derivative and "double zeroes"
- 5 Semi-discrete Lagrangian multiforms
- 6 Lagrangian multiforms on Lie groups
- Outlook

Exterior derivative of \mathcal{L}

Revisit the Kepler problem: $\mathcal{L} = L_1 \mathrm{d} t_1 + L_2 \mathrm{d} t_2$ with

$$\begin{split} L_1[\boldsymbol{q}] &= \frac{1}{2} |\boldsymbol{q}_{t_1}|^2 + \frac{1}{|\boldsymbol{q}|} \\ L_2[\boldsymbol{q}] &= \boldsymbol{q}_{t_1} \cdot \boldsymbol{q}_{t_2} + (\boldsymbol{q}_{t_1} \times \boldsymbol{q}) \cdot \hat{\boldsymbol{v}} \qquad (\hat{\boldsymbol{v}} \text{ fixed unit vector}) \end{split}$$

Multi-time Euler-Lagrange equations:

$$oldsymbol{q}_{t_1t_1} = -rac{oldsymbol{q}}{|oldsymbol{q}|^3} \qquad \qquad oldsymbol{q}_{t_2} = \hat{oldsymbol{v}} imes oldsymbol{q}$$

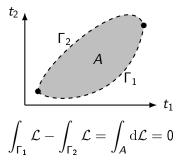
Coefficient of $d\mathcal{L}$

$$\frac{\mathrm{d}L_2}{\mathrm{d}t_1} - \frac{\mathrm{d}L_1}{\mathrm{d}t_2} = \left(\boldsymbol{q}_{t_1t_1} + \frac{\boldsymbol{q}}{|\boldsymbol{q}|^3}\right) \cdot \left(\boldsymbol{q}_{t_2} - \hat{\boldsymbol{v}} \times \boldsymbol{q}\right)$$

Observation: $d\mathcal{L}$ typically has a "double zero" on solutions.

Interpretation of closedness condition I

If $\mathrm{d}\mathcal{L}=0$, the action is invariant wrt variations in geometry



Lagrangian multiform principle

Require that

- ▶ pluri-Lagrangian principle holds (variations of **q**),
- deforming the curve of integration leaves action invariant.

Interpretation of closedness condition II

 $\mathrm{d}\mathcal{L}$ provides an alternative derivation of the EL equations:

WLOG, we can restrict the variational principle to simple closed curves, i.e. boundaries of a surface D.

Then

$$\delta \int_{\partial D} \mathcal{L} = - \int_{D} \delta \mathrm{d} \mathcal{L},$$

hence the pluri-Lagrangian principle is equivalent to $\delta d\mathcal{L} = 0$.

If $\mathrm{d}\mathcal{L}$ has a double zero on a set of equations $E_1=0,\ E_2=0,\ \ldots,$

$$\mathrm{d}\mathcal{L} = \sum_{i,j} E_i E_j \, \mathrm{d}t_i \wedge \mathrm{d}t_j$$

or

$$\mathrm{d}\mathcal{L} = \sum_{i,j} \bigg(\sum_{\alpha,\beta} c_{\alpha,\beta}^{i,j} \mathsf{E}_{\alpha} \mathsf{E}_{\beta} \bigg) \mathrm{d}t_i \wedge \mathrm{d}t_j,$$

then \boldsymbol{q} is critical if $E_1=0, E_2=0, \ldots$

- Introduction
- 2 Lagrangian 1-forms o integrable ODEs
- 3 Lagrangian 2-forms → integrable PDEs
- 4 Exterior derivative and "double zeroes"
- 5 Semi-discrete Lagrangian multiforms
- 6 Lagrangian multiforms on Lie groups
- Outlook

Semi-discrete systems

Consider particles on a line: 1 discrete dimension, many continuous times

Denote
$$q_1=q_{t_1}=rac{\mathrm{d}q}{\mathrm{d}t_1}$$
, $q_{11}=q_{t_1t_1}=rac{\mathrm{d}^2q}{\mathrm{d}t_1^2}$, etc.

Toda lattice: exponential nearest-neighbour interaction

$$q_{11} = \exp(\bar{q} - q) - \exp(q - \underline{q}).$$

Part of a hierarchy. First symmetry:

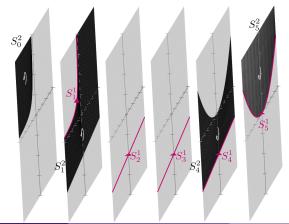
$$q_2 = q_1^2 + \exp(\bar{q} - q) + \exp(q - \underline{q})$$

Semi-discrete geometry

Consider the case with only 1 discrete direction: $\mathbb{Z} \times \mathbb{R}^N$

A semi-discrete surface is a collection of surfaces and curves in \mathbb{R}^N , each at a specified point in \mathbb{Z}

Intuition: curves where the surface jumps to a different value of $\ensuremath{\mathbb{Z}}$



Semi-discrete geometry

- lackbox Consider (scalar) functions q of $\mathbb{Z} imes \mathbb{R}^N$. Superscript to emphasise lattice position: $q^{[k]} = q(k, t_1, \dots, t_N)$
- Semi-discrete 2-form $\mathcal{L}[q]$ is part 1-form and part 2-form: components L_{0j} are integrated over curves, components L_{ij} integrated over surfaces.
- We have semi-discrete versions of the exterior derivative, the boundary, and Stokes theorem

Variational principle

Look for $q(k, t_1, \ldots, t_N)$ such that the action

$$\int_{\Gamma} \mathcal{L}[q]$$

is critical w.r.t. variations of q, simultaneously over every semi-discrete surface Γ .

Toda lattice

Lagrangians ("0" for discrete direction)

$$egin{aligned} L_{01} &= rac{1}{2} q_1^2 - \exp(ar{q} - q) \ L_{02} &= q_1 q_2 - rac{1}{3} q_1^3 - (q_1 + ar{q}_1) \exp(ar{q} - q) \ L_{12} &= -rac{1}{4} \left(q_2 - q_{11} - q_1^2
ight)^2 \end{aligned}$$

Euler-Lagrange equations:

$$\frac{\delta_{01}L_{01}}{\delta q} = 0 \qquad \to \qquad q_{11} = \exp(\bar{q} - q) - \exp(q - \underline{q})$$

$$\frac{\delta_{02}L_{02}}{\delta q_1} = 0 \qquad \to \qquad q_2 = q_1^2 + \exp(\bar{q} - q) + \exp(q - \underline{q})$$

$$\frac{\delta_{12}L_{12}}{\delta q} = 0 \qquad \to \qquad \frac{1}{2}q_{22} - q_{11}q_2 - 2q_{12}q_1 - \frac{1}{2}q_{1111} + 3q_1^2q_{11} = 0$$

Lagrangian formalism produces a non-trivial PDE at a single lattice site.

- Introduction
- 2 Lagrangian 1-forms \rightarrow integrable ODEs
- 3 Lagrangian 2-forms → integrable PDEs
- Exterior derivative and "double zeroes"
- 5 Semi-discrete Lagrangian multiforms
- 6 Lagrangian multiforms on Lie groups
- Outlook

Non-commuting flows

What if symmetries that do not commute with each other?

euclidean multi-time
$$\to$$
 Lie group
$$\frac{\partial}{\partial t_i} \to \begin{cases} \text{Lie algebra element } \xi \\ \text{infinitesimal generator } \partial_\xi \text{ of its action} \end{cases}$$

The relation between Poisson brackets and $\mathrm{d}\mathcal{L}$ becomes

$$\{ H_\xi, H_\nu \} = H_{[\xi, \nu]} + \partial_\xi \lrcorner \partial_\nu \lrcorner \mathrm{d}\mathcal{L} + (\mathsf{EL\ eqs})^2,$$

where H_{ξ} is the Hamiltonian of ∂_{ξ}

Hence $d\mathcal{L} = 0$ encodes the Lie algebra structure.

Example: rotation group for central force system

Multi-time:
$$\mathbb{R} \times SO(3)$$
, generators $\xi_0 (=\frac{\partial}{\partial t}), \xi_1, \xi_2, \xi_3$ with $[\xi_1, \xi_2] = \xi_3$ (and cyclic permutations of 1,2,3)

Lagrangian 1-form defined by

$$L_0 = \partial_{\xi_0} \bot \mathcal{L} = \frac{1}{2} |\boldsymbol{q}_0|^2 - V(|\boldsymbol{q}|)$$

$$L_i = \partial_{\xi_1} \bot \mathcal{L} = \boldsymbol{q}_0 \cdot \boldsymbol{q}_i - (\boldsymbol{q} \times \boldsymbol{q}_0) \cdot \boldsymbol{e}_i \quad \text{for } i = 1, 2, 3$$

Multi-time Euler-Lagrange equations:

$$\mathbf{q}_{00} = -\nabla V(|\mathbf{q}|) \qquad \mathbf{q}_i = \mathbf{e}_i \times \mathbf{q}$$

Closure relation:

Is multi-time always a Lie group?

lf

$$\{H_i, H_j\} = \sum_k C_{ij}^k H_k,$$

then yes:

$$[X_{H_i}, X_{H_j}] = \sum_k C_{ij}^k H_k$$

Example: Kepler problem with angular momentum ℓ and Runge-Lenz vector \boldsymbol{A} . We have $\{H,\cdot\}=0$ and

$$\{\ell_i,\ell_j\} = -\epsilon_{ijk}\ell_k\,, \qquad \{A_i,\ell_j\} = -\epsilon_{ijk}A_k\,, \qquad \{A_i,A_j\} = 2\epsilon_{ijk}H\ell_k$$

can be linearised by setting $\widetilde{A} = \frac{A}{\sqrt{-2H}}$:

$$\{\ell_i,\ell_j\} = -\epsilon_{ijk}\ell_k, \qquad \{\widetilde{A}_i,\ell_j\} = -\epsilon_{ijk}\widetilde{A}_k, \qquad \{\widetilde{A}_i,\widetilde{A}_j\} = -\epsilon_{ijk}\ell_k$$

When linearisation is not possible, we think multi-time should be a Lie groupoid. (Details have not been worked out!)

- Introduction
- 2 Lagrangian 1-forms \rightarrow integrable ODEs
- 3 Lagrangian 2-forms → integrable PDEs
- 4 Exterior derivative and "double zeroes"
- 5 Semi-discrete Lagrangian multiforms
- 6 Lagrangian multiforms on Lie groups
- Outlook

Summary

Lagrangian multiform (or pluri-Lagrangian) provides a unified perspective on integrable* ODEs and PDEs, discrete, semi-discrete and continuous.

*or Lagrangian systems with any amount of symmetry

Much work to do:

- Geometry of multi-time for general superintegrable systems?
- Multiforms as a tool for constructing solutions?
- Full development of semi-discrete case?
- Semi-discrete multiforms in geometric numerical integration?
- ► Applications to gauge theory?
- ► Application to quantum integrable systems, path integrals, ...?

Selected references

- First Lagrangian multiform paper (discrete 2-forms): S Lobb, F Nijhoff.

 Lagrangian multiforms and multidimensional consistency. J Phys A, 2009.
- Discrete and continuous 1-forms: Yu Suris. Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms. J Geom Mech, 2013
- Continuous 2-forms: Yu Suris, MV. On the Lagrangian structure of integrable hierarchies. In: Advances in Discrete Differential Geometry, Springer, 2016.
- Connections between Hamiltonian and Lagrangian perspectives: MV. Hamiltonian structures for integrable hierarchies of Lagrangian PDEs. OCNMP, 2021.
- Semi-discrete Lagrangian multiforms: D Sleigh, MV. Semi-discrete Lagrangian 2-forms and the Toda hierarchy. J Phys A, 2022.
- Non-commuting flows: V Caudrelier, F Nijhoff, D sleigh, MV. Lagrangian multiforms on Lie groups and non-commuting flows. J Geom Phys, 2023
- Connection to *r*-matrices V Caudrelier, M Dell'Atti, A Singh. Lagrangian multiforms on coadjoint orbits for finite-dimensional integrable systems. LMP 2024
- Classification with multiforms T Kongkoom, FW Nijhoff, S Yoo-Kong. Lagrangian 1-form structure of Calogero-Moser type systems. arXiv:2410.15773