
A variational principle for integrable systems

Mats Vermeeren

Milano

December, 2024



About me

Yuri B. Suris

Frank Nijho�

Vincent Caudrelier

Mats Vermeeren A variational principle for integrable systems December, 2024 1 / 33



Contents

1 Introduction

2 Lagrangian 1-forms → integrable ODEs

3 Lagrangian 2-forms → integrable PDEs

4 Exterior derivative and �double zeroes�

5 Semi-discrete Lagrangian multiforms

6 Lagrangian multiforms on Lie groups

7 Outlook

Mats Vermeeren A variational principle for integrable systems December, 2024 2 / 33



Contents

1 Introduction

2 Lagrangian 1-forms → integrable ODEs

3 Lagrangian 2-forms → integrable PDEs

4 Exterior derivative and �double zeroes�

5 Semi-discrete Lagrangian multiforms

6 Lagrangian multiforms on Lie groups

7 Outlook

Mats Vermeeren A variational principle for integrable systems December, 2024 3 / 33



Liouville integrability

A Hamiltonian system with Hamilton function H : T ∗Q ∼= R2N → R is

Liouville integrable if there exist N functionally independent Hamilton

functions H = H1,H2, . . .HN such that {Hi ,Hj} = 0.

▶ Each Hi de�nes its own �ow ϕt
Hj
: N dynamical systems

▶ The �ows commute: ϕti
Hi

◦ ϕtj
Hj

= ϕ
sj
Hj

◦ ϕti
Hi
.

(In�nitesimally: [XHi
,XHj

] = 0.)

We can consider (q,p) as a function of multi-time, RN → T ∗Q:

(t1, . . . , tN) 7→ (q(t1, . . . , tN),p(t1, . . . , tN))

t1

t2

•
Initial condition
(q(0, 0),p(0, 0))

• (q(t1, t2),p(t1, t2))
independent of path
through multi-time
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Lagrangian mechanics

Lagrange function L : TQ ∼= R2N → R : (q,qt) 7→ L(q,qt)

Dynamics follows curves which are minimizers (critical points) of the action∫ b

a
L(q,qt) dt with �xed boundary values q(a) and q(b).

Minimizers satisfy the Euler-Lagrange (EL) equation
∂L

∂q
− d

dt

∂L

∂qt

= 0

Proof. Consider an arbitrary variation δq:

δ

∫ b

a
L dt =

∫ b

a

(
∂L

∂q
δq +

∂L

∂qt

δqt

)
dt

Integration by parts yields

δ

∫ b

a
L dt =

∫ b

a

(
∂L

∂q
− d

dt

∂L

∂qt

)
δq dt +

[
∂L

∂qt

δq

]b
a

EL follows because δq(a) = δq(b) = 0 and δq is arbitrary inside (a, b). ■
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Lagrangian formulation of Liouville integrable system

Suppose we have Lagrange functions Li associated to Hi . Consider

q : RN → Q (multi-time to con�guration space)

Variational (�Pluri-Lagrangian�) principle for ODEs

Combine the Li into a 1-form

L[q] =
N∑
i=1

Li [q] dti .

Look for q(t1, . . . , tN) such that the action

SΓ =

∫
Γ
L[q]

is critical w.r.t. variations of q, simultaneously

over every curve Γ in multi-time RN
t1

t2

SΓ =
∫
L1 dt1

SΓ =
∫
L2 dt2

Lagrangian multiform principle: the action is the same for all curves.
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Multi-time Euler-Lagrange equations

Assume that

L1[q] = L1(q,qt1),

Li [q] = Li (q,qt1 ,qti ), i ̸= 1

The multi-time Euler-Lagrange equations for L =
∑
i

Li [q] dti are

Usual Euler-Lagrange equations:
∂Li
∂q

− d

dti

∂Li
∂qti

= 0

? :
∂Li
∂qt1

= 0, i ̸= 1

Compatibility conditions:
∂Li
∂qti

=
∂Lj
∂qtj
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Example: Kepler Problem

Take
L1 =

1

2
|qt1 |

2 +
1

|q|
L2 = qt1 · qt2 + (qt1 × q) · v̂ (v̂ �xed unit vector)

In general: Li = qt1 · qti − Hi (q,qt1)

Multi-time Euler-Lagrange equations of L = L1dt1 + L2dt2

∂L1
∂q

− d

dt1

∂L1
∂qt1

= 0 ⇒ qt1t1 = − q

|q|3
(Keplerian motion)

∂L2
∂q

− d

dt2

∂L2
∂qt2

= 0 ⇒ qt1t2 = v̂ × qt1

∂L2
∂qt1

= 0 ⇒ qt2 = v̂ × q (Rotation)

∂L1
∂qt1

=
∂L2
∂qt2

⇒ qt1 = qt1
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Derivation of the multi-time Euler-Lagrange equations

Consider a Lagrangian one-form L =
∑
i

Li [q] dti , with

L1[q] = L1(q,qt1),

Li [q] = Li (q,qt1 ,qti ), i ̸= 1

Lemma

If the action
∫
Γ L is critical on all stepped curves Γ

in RN , then it is critical on all smooth curves.

Variations are local, so it is su�cient to look at an

L-shaped curve Γ = Γi ∪ Γj .

ti

tj

Γi

Γj

C
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Derivation of the multi-time Euler-Lagrange equations

On one of the straight pieces, Γi (i ̸= 1), we get

δ

∫
Γi

Li dti =

∫
Γi

(
∂Li
∂q

δq +
∂Li
∂qt1

δqt1 +
∂Li
∂qti

δqti

)
dti

Integration by parts (wrt ti only) yields ti

tj

Γi

Γj

C

δ

∫
Γi

Li dti =

∫
Γi

((
∂Li
∂q

− d

dti

∂Li
∂qti

)
δq +

∂Li
∂qt1

δqt1

)
dti +

∂Li
∂qti

δq

∣∣∣∣
C

Since C is an interior point of the curve, we cannot set δq(C ) = 0!

Arbitrary δq and δqt1 , so we �nd:

Multi-time Euler-Lagrange equations

∂Li
∂q

− d

dti

∂Li
∂qti

= 0,
∂Li
∂qt1

= 0,
∂Li
∂qti

=
∂Lj
∂qtj
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Higher order Lagranigans Li [q] = Li(q,qti ,qti tj , . . .)

For a string I = ti1 . . . tik of time variables, denote the corresponding

derivative by q I .

If I is empty then q I = q.

Denote by
δi
δq I

the variational derivative in the direction of ti wrt q I :

δiLi
δqI

=
∞∑
α=0

(−1)α
d
α

dtαi

∂Li
∂q Itαi

=
∂Li
∂q I

− d

dti

∂Li
∂q Iti

+
d
2

dt2i

∂Li
∂q It2i

− . . .

Multi-time Euler-Lagrange equations

Usual Euler-Lagrange equations:
δiLi
δq I

= 0 ∀I ̸∋ ti ,

Additional conditions:
δiLi
δq Iti

=
δjLj
δq Itj

∀I ,
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Variational principle for PDEs (d = 2)

Pluri-Lagrangian principle

Given a 2-form

L[q] =
∑

i ,j Lij [q] dti ∧ dtj ,

�nd a �eld q : RN → R, such that

∫
Γ
L[q] is critical on all smooth surfaces

Γ in multi-time RN , w.r.t. variations of q.
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Multi-time EL equations

for L[q] =
∑
i ,j

Lij [q] dti ∧ dtj

δijLij
δqI

= 0 ∀I ̸∋ ti , tj ,

δijLij
δqItj

=
δikLik
δqItk

∀I ̸∋ ti ,

δijLij
δqIti tj

+
δjkLjk
δqItj tk

+
δkiLki
δqItk ti

= 0 ∀I .

Where
δijLij
δqI

=
∞∑
α=0

∞∑
β=0

(−1)α+β d
α

dtαi

d
β

dtβj

∂Lij
∂q

Itαi tβj
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Example: Potential KdV hierarchy

qt2 = qxxx + 3q2x ,

qt3 = qxxxxx + 10qxqxxx + 5q2xx + 10q3x ,

where we identify t1 = x .

The di�erentiated equations qxti =
d

dx (· · · ) are Lagrangian with

L12 =
1

2
qxqt2 −

1

2
qxqxxx − q3x ,

L13 =
1

2
qxqt3 −

1

2
q2xxx + 5qxq

2

xx −
5

2
q4x .

A suitable coe�cient L23 of

L = L12 dt1 ∧ dt2 + L13 dt1 ∧ dt3 + L23 dt2 ∧ dt3

can be found (nontrivial task!).
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Example: Potential KdV hierarchy

▶ The equations
δ12L12
δq

= 0 and
δ13L13
δq

= 0 yield

qxt2 =
d

dx

(
qxxx + 3q2x

)
,

qxt3 =
d

dx

(
qxxxxx + 10qxqxxx + 5q2xx + 10q3x

)
.

▶ The equations
δ12L12
δqx

=
δ32L32
δqt3

and
δ13L13
δqx

=
δ23L23
δqt2

yield

qt2 = qxxx + 3q2x ,

qt3 = qxxxxx + 10qxqxxx + 5q2xx + 10q3x ,

the evolutionary equations!

▶ All other multi-time EL equations are corollaries of these.

Mats Vermeeren A variational principle for integrable systems December, 2024 16 / 33



Hamiltonian structure

Set p[q] =
δ1L1j
δqj

(independent of j), then L1j = p[q]qj − hj [q]

0 =
δ1L1j
δq

=
∑
k

(
(−1)k∂k

x

∂p[q]

∂qxk
− ∂p[q]

∂qxk
∂k
x

)
︸ ︷︷ ︸

Ep

qj −
δhj
δq

Then, qj = E−1
p

δhj
δq , so hj are Hamiltonians wrt the Poisson bracket

{
∫
f dx ,

∫
g dx} = −

∫
δf

δq
E−1

p

δg

δq
dx

Example: potential KdV

p[q] =
1

2
qx , Ep = −∂x , {

∫
f dx ,

∫
g dx} =

∫
δf

δq
∂−1

x

δg

δq
dx

In the KdV variable u = qx , this becomes

{
∫
f dx ,

∫
g dx} =

∫ (
∂x

δf

δu

)
δg

δu
dx
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Exterior derivative of L
Revisit the Kepler problem: L = L1dt1 + L2dt2 with

L1[q] =
1

2
|qt1 |

2 +
1

|q|
L2[q] = qt1 · qt2 + (qt1 × q) · v̂ (v̂ �xed unit vector)

Multi-time Euler-Lagrange equations:

qt1t1 = − q

|q|3
qt2 = v̂ × q

Coe�cient of dL
dL2
dt1

− dL1
dt2

=

(
qt1t1 +

q

|q|3

)
· (qt2 − v̂ × q)

Observation: dL typically has a �double zero� on solutions.
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Interpretation of closedness condition I

If dL = 0, the action is invariant wrt variations in geometry

t1

t2

•

•

Γ1

Γ2

A

∫
Γ1

L −
∫
Γ2

L =

∫
A
dL = 0

Lagrangian multiform principle

Require that
▶ pluri-Lagrangian principle holds (variations of q),
▶ deforming the curve of integration leaves action invariant.
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Interpretation of closedness condition II

dL provides an alternative derivation of the EL equations:

WLOG, we can restrict the variational principle to simple closed curves,

i.e. boundaries of a surface D.

Then

δ

∫
∂D

L = −
∫
D
δdL,

hence the pluri-Lagrangian principle is equivalent to δdL = 0.

If dL has a double zero on a set of equations E1 = 0, E2 = 0, . . . ,

dL =
∑
i ,j

EiEj dti ∧ dtj

or

dL =
∑
i ,j

(∑
α,β

c i ,jα,βEαEβ

)
dti ∧ dtj ,

then q is critical if E1 = 0, E2 = 0, . . .
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Semi-discrete systems

Consider particles on a line: 1 discrete dimension, many continuous times

· · · q q q̄ · · ·

Denote q1 = qt1 =
dq
dt1

, q11 = qt1t1 =
d2q
dt21

, etc.

Toda lattice: exponential nearest-neighbour interaction

q11 = exp(q̄ − q)− exp(q − q).

Part of a hierarchy. First symmetry:

q2 = q21 + exp(q̄ − q) + exp(q − q)
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Semi-discrete geometry

Consider the case with only 1 discrete direction: Z× RN

A semi-discrete surface is a collection of surfaces and curves in RN , each at

a speci�ed point in Z

Intuition: curves where the surface jumps to a di�erent value of Z
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Semi-discrete geometry

▶ Consider (scalar) functions q of Z× RN .

Superscript to emphasise lattice position: q[k] = q(k , t1, . . . , tN)

▶ Semi-discrete 2-form L[q] is part 1-form and part 2-form:

components L0j are integrated over curves,

components Lij integrated over surfaces.

▶ We have semi-discrete versions of the exterior derivative, the

boundary, and Stokes theorem

Variational principle

Look for q(k, t1, . . . , tN) such that the action∫
Γ
L[q]

is critical w.r.t. variations of q, simultaneously over every semi-discrete

surface Γ.
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Toda lattice

Lagrangians (�0� for discrete direction)

L01 =
1

2
q21 − exp(q̄ − q)

L02 = q1q2 −
1

3
q31 − (q1 + q̄1) exp(q̄ − q)

L12 = −1

4

(
q2 − q11 − q21

)2
Euler-Lagrange equations:

δ01L01
δq

= 0 → q11 = exp(q̄ − q)− exp(q − q)

δ02L02
δq1

= 0 → q2 = q21 + exp(q̄ − q) + exp(q − q)

δ12L12
δq

= 0 → 1

2
q22 − q11q2 − 2q12q1 −

1

2
q1111 + 3q21q11 = 0

Lagrangian formalism produces a non-trivial PDE at a single lattice site.
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Non-commuting �ows

What if symmetries that do not commute with each other?

euclidean multi-time → Lie group

∂

∂ti
→

{
Lie algebra element ξ

in�nitesimal generator ∂ξ of its action

The relation between Poisson brackets and dL becomes

{Hξ,Hν} = H[ξ,ν] + ∂ξ⌟∂ν⌟dL+ (EL eqs)2,

where Hξ is the Hamiltonian of ∂ξ

Hence dL = 0 encodes the Lie algebra structure.
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Example: rotation group for central force system

Multi-time: R× SO(3), generators ξ0(=
∂
∂t ), ξ1, ξ2, ξ3 with

[ξ1, ξ2] = ξ3 (and cyclic permutations of 1,2,3)

Lagrangian 1-form de�ned by

L0 = ∂ξ0⌟L =
1

2
|q0|2 − V (|q|)

Li = ∂ξ1⌟L = q0 · q i − (q × q0) · e i for i = 1, 2, 3

Multi-time Euler-Lagrange equations:

q00 = −∇V (|q|) q i = e i × q

Closure relation:

∂ξi⌟∂ξj⌟dL = ∂ξiLj − ∂ξjLi − [∂ξi , ∂ξj ]⌟L
= (q0i − e i × q0) · (q j − e j × q)

− (q0j − e j × q0) · (q i − e i × q) = 0
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Is multi-time always a Lie group?

If

{Hi ,Hj} =
∑
k

C k
ij Hk ,

then yes:

[XHi
,XHj

] =
∑
k

C k
ij Hk

Example: Kepler problem with angular momentum ℓ and Runge-Lenz

vector A. We have {H, ·} = 0 and

{ℓi , ℓj} = −ϵijkℓk , {Ai , ℓj} = −ϵijkAk , {Ai ,Aj} = 2ϵijkHℓk

can be linearised by setting Ã = A√
−2H

:

{ℓi , ℓj} = −ϵijkℓk , {Ãi , ℓj} = −ϵijk Ãk , {Ãi , Ãj} = −ϵijkℓk

When linearisation is not possible, we think multi-time should be a

Lie groupoid. (Details have not been worked out!)
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Summary

Lagrangian multiform (or pluri-Lagrangian) provides a uni�ed perspective

on integrable* ODEs and PDEs, discrete, semi-discrete and continuous.

*or Lagrangian systems with any amount of symmetry

Much work to do:

▶ Geometry of multi-time for general superintegrable systems?

▶ Multiforms as a tool for constructing solutions?

▶ Full development of semi-discrete case?

▶ Semi-discrete multiforms in geometric numerical integration?

▶ Applications to gauge theory?

▶ Application to quantum integrable systems, path integrals, . . . ?
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