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Background: symplectic dynamics
Symplectic form ω: closed non-degenerate 2-form on a 2n-dimensional manifold M
A Hamilton function H : M → R induces a Hamiltonian vector field XH on M:

ιXH
ω = dH

In Darboux coordinates (x1, . . . , xn, p1, . . . pn)

ω =
∑
i

dpi ∧ dxi

The vector field XH is given by

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
.

Example. In mechanics, we usually have H(x , p) = 1
2 |p|

2 + U(x) leading to

ẋ = p, ṗ = −U ′(x)
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Properties of Hamiltonian systems
The flow of Ft : M → M : (x(0), p(0)) 7→ (x(t), p(t)) of a Hamiltonian vector field
preserves the symplectic form,

(Ft)
∗ω = ω,

the corresponding volume

(Ft)
∗ωn = ωn = dp1 ∧ . . . ∧ dpn ∧ x1 ∧ . . . ∧ dxn,

and the energy,
H(x(t), p(t)) = H(x(0), p(0)).

If the system has symmetries, then the corresponding generalized momenta are
conserved quantities (Noether’s theorem).

Mats Vermeeren Contact variational integrators December 4, 2025 3 / 29



Lagrangian mechanics
If we can solve ẋ = ∂H

∂p for p, then solutions to the Hamiltonian equations satisfy a
variational principle:

δ

∫ t

0
L(x , ẋ) dt = 0

for variations δx of x leaving the endpoints x(0) and x(t) invariant, where the
Lagrangian is L(x , ẋ) = pẋ − H(x , p).

Critical curves are characterized by Euler-Lagrange equation

0 =

∫ t

0

∂L
∂x

δx +
∂L
∂ẋ

δẋ dt =
∫ t

0

(
∂L
∂x

− d
dt

∂L
∂ẋ

)
δx dt ⇔ ∂L

∂x
− d

dt
∂L
∂ẋ

= 0

Example. For H(x , p) = 1
2 |p|

2 + U(x) we find

L(x , ẋ) = |ẋ |2 − U(x)

leading to the Euler-Lagrange equation −U ′(x)− ẍ = 0
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Geometric discretisation

Main idea
Discretisation preserving the geometric structure often leads to improved accuracy,
especially over long time intervals.

A map Φh : M → M,Φh(x , p) = (x , p) +O(h) is a consistent discretisation of the
flow Ft if

Φh(x , p) = Fh(x , p) +O(h2) (= (x , p) +O(h))

Φh is called symplectic if it preserves ω: (Φh)
∗ω = ω.

An effective way to obtain sympletic integrators is by discretizing the variational
principle:
Look for a discrete curve x0, x1, . . . , xN minimizing the discrete action∑

i L(xi , xi+1; h),

where L(x(0), x(h); h) ≈ minx
∫ h
0 L(x(t), ẋ(t)) dt.

Mats Vermeeren Contact variational integrators December 4, 2025 5 / 29



Properties of symplectic integrators
By definition, a symplectic integrator preserves the symplectic form,

(Φh)
∗ω = ω,

and hence the corresponding volume

(Φh)
∗ωn = ωn.

A symplectic integrator very nearly preserves a modified energy Emod ≈ H:

Emod(Φ
n
h(x , p)) ≈ Emod(x , p)

over a time interval of length O(e−h).

If the discretization has symmetries, then there exist conserved generalized discrete
momenta.

[Marsden, West. Discrete mechanics and variational integrators. Acta numerica, 2001]
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Contact geometry on a (2n + 1)-dimensional manifold M

A Contact structure is a distribution of hyperplanes ξ ⊂ TM that is maximally
non-integrable: a submanifold tangent to the distribution has dimension at most n.

Locally, such a distribution is given by the
kernel of a 1-form η on M satisfying

η ∧ (dη)n ̸= 0.

Reeb vector field R defined by

ιRdη = 0 and η(R) = 1.

Multiplying η by a non-vanishing function
does not change the contact structure.

dz − ydx

F : M → M is a contact transformation if F ∗η = gη for some g : M → R \ {0}.
X : M → TM is a contact vector field if LXη = gη for some g : M → R \ {0}, where
L denotes the Lie derivative
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Contact Hamiltonian systems
There exist local coordinates (x1, . . . , xn, p1, . . . , pn, z) such that the contact 1-form is

η = dz − p dx = dz −
∑

i pi dxi ,

and the Reeb vector field is R = ∂z .

Contact Hamiltonian vector field

LXH
η = gH η and η(XH) = −H,

where gH : M → R \ {0} is a scalar function, given by gH = −Rη(H).

For comparison with symplectic mechanics, note that

ιXH
(dp ∧ dq) = ιXH

(dη) = −d(ιXH
η) + LXη = dH + gH η.

In Darboux coordinates the contact Hamiltonian equations are

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
− p

∂H

∂z
, ż = p

∂H

∂p
− H.
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Damped mechanical systems
Contact Hamiltonian systems satisfy

dH
dt

= −H
∂H

∂z
↔ XHH = −R(H)H

so dissipation can occur!
Example. A Hamiltonian of the form

H =
1
2
p2 + U(x) + αz

describes a mechanical system with linear damping:
ẋ = p

ṗ = −U ′(x)− αp

ż = p2 − H.

Written as a second order ODE:ẍ = −U ′(x)− αẋ .
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Other applications
▶ Thermodynamics

[Bravetti. Contact geometry and thermodynamics. International Journal of
Geometric Methods in Modern Physics, 2018.]

▶ Integrable systems
[Sergyeyev. New integrable (3 + 1)-dimensional systems and contact geometry.
Letters in Mathematical Physics, 2018.]

▶ Optimal control
[Ohsawa T. Contact geometry of the Pontryagin maximum principle. Automatica,
2015.]
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Hamiltonian integrators
In many examples, H(x , p, z) = A(p) + B(x) + Cz . Then

XA = A′(p)∂x + (pA(p)− A(p))∂z

XB = −B ′(x)∂p − B(x)∂z

XCz = −pC∂p − Cz∂z ,

which are all explicitly integrable:

exp(tXA)(x , p, z) = (x + tA′(p), p , z + t(pA(p)− A(p))

exp(tXB)(x , p, z) = (x , p − t(B ′(x) + B(x)), z + t(pA(p)− A(p))

exp(tXC )(x , p, z) = (x , p − tpC , exp(Ct)z )

Splitting integrator (2nd order)

S2(h) = exp

(
h

2
XC

)
exp

(
h

2
XB

)
exp(hXA) exp

(
h

2
XB

)
exp

(
h

2
XC

)
.

As a composition of contact transformations, S2(h) is itself a contact transformation.
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Hamiltonian integrators
Given a second order contact integrator S2, higher order contact integrators can be
obtained recursively by “Yoshida’s trick”:

S2n+2(h) = S2n(αnh)S2n(βnh)S2n(αnh)

where αn = 1

2−2
1

2n+1
and βn = − 2

1
2n+1

2−2
1

2n+1
.

A more complicated but similar construction for S2 applies for Hamiltonians

H(t, x , p, z) = A(t, p) + B(t, x) + C (t)z

depending explicitly on time.

[Yoshida. Construction of higher order symplectic integrators. Physics letters A, 1990]
[Bravetti, Seri, V, Zadra. Numerical integration in celestial mechanics: a case for
contact geometry. Celest Mech Dyn Astr, 2020]
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Herglotz’ variational principle
The contact Hamiltonian equation for z is

ż = p
∂H

∂p
− H

?
= L

Herglotz’ variational principle
Lagrangian L : TQ × R → R.
Given a curve x : [0,T ] → Q, define z : [0,T ] → R by z(0) = z0 and

ż(t) = L(x(t), ẋ(t), z(t))

We look for a curve x such that every variation of x that vanishes at the boundary of
[0,T ] leaves the action z(T ) invariant.

If L does not depend on z we find the familiar action: z(T ) =

∫ T

0
L(x(t), ẋ(t)) dt.

[Herglotz. Berührungstransformationen Lecture notes, Göttingen, 1930.]
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Direct approach aka implicit approach
A variation δx of x induces a variation δz of z :

ż(t) = L(x(t), ẋ(t), z(t)) ⇒ δż =
∂L
∂x

δx +
∂L
∂ẋ

δẋ︸ ︷︷ ︸
A(t)

+
∂L
∂z︸︷︷︸
dB(t)
dt

δz .

The solution of δż(t) = A(t) +
dB(t)

dt
δz(t) is

δz(T ) = eB(T )

[∫ T

0
A(τ)e−B(τ) dτ + δz(0)

]
= eB(T )

[∫ T

0

(
∂L
∂x

δx +
∂L
∂ẋ

δẋ

)
e−B(τ) dτ + δz(0)

]
= eB(T )

[ ∫ T

0

(
∂L
∂x

− d
dt

∂L
∂ẋ

+
∂L
∂z

∂L
∂ẋ

)
δx e−B(τ) dτ

+
∂L
∂ẋ

(T )δx(T ) e−B(T ) − ∂L
∂ẋ

(0)δx(0) + δz(0)
]
.
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Direct approach aka implicit approach

δz(T ) = eB(T )

[ ∫ T

0

(
∂L
∂x

− d
dt

∂L
∂ẋ

+
∂L
∂z

∂L
∂ẋ

)
δx e−B(τ) dτ

+
∂L
∂ẋ

(T )δx(T ) e−B(T ) − ∂L
∂ẋ

(0)δx(0) + δz(0)
]
.

Variations satisfy δx(0) = δx(T ) = δz(0) = 0.

Generalized Euler-Lagrange equations:
∂L
∂x

− d
dt

∂L
∂ẋ

+
∂L
∂z

∂L
∂ẋ

= 0

If instead we restrict to solution curves, but vary the endpoints, we obtain

δz(T ) =
∂L
∂ẋ

(T )δx(T )− eB(T )

[
∂L
∂ẋ

(0)δx(0) + δz(0)
]

Contact structure: ϕ∗
T (dz − p dx) = eB(T )(dz − p dx)

where p = ∂L
∂ẋ and ϕT denotes the flow over the time interval [0,T ].
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Vakonomic approach
Consider ż = L as a constraint, so the action becomes

S = z(T ) +

∫ T

0
λ
(
ż − L(x , ẋ , z)

)
dt = z(0) +

∫ T

0
ż + λ

(
ż − L(x , ẋ , z)

)
dt

Vary x , z with fixed endpoints: 0 =
δS

δx
= λ

∂L
∂x

− λ
d
dt

∂L
∂ẋ

− λ̇
∂L
∂ẋ

0 =
δS

δz
= −λ̇− λ

∂L
∂z

Hence λ̇ = −λ
∂L
∂z

and λ
∂L
∂x

− λ
d
dt

∂L
∂ẋ

+ λ
∂L
∂z

∂L
∂ẋ

= 0

If we restrict to solution curves, but vary the endpoints, we get δS =
[
λ(δz − pδx)

]T
0
.

[León, Lainz, Muñoz-Lecanda. The Herglotz principle and vakonomic dynamics.
International Conference on Geometric Science of Information, 2021]
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Dissipated quantities
If v = (vx∂x + vz∂z) is a variational symmetry, i.e.

δS(v) = 0 for all curves x , z , not just solutions,

then restricted to solutions we find

δS(v) =
[
λ(δz − pδx)

]T
0
(v) =

[
λ(vz − pvx)

]T
0
= 0

so λη(v) = λ(vz − pvx) is constant.

η(v) = vz − pvx ∼ λ−1 is a dissipated quantity.

λ does not depend on v , so each dissipated quantity has the same rate of dissipation.

In particular, if v = ∂t , i.e. vx = ẋ and vz = ż , we find the dissipated quantity

ż − pẋ = L − pẋ = −H.

Equivalently, if v = XH , then the dissipated quantity is η(XH) = −H.
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Discrete Herglotz variational principle
Variational integrator: approximate minx

∫ t+h
t L(x , ẋ , z) dt by L(xj , xj+1, zj , zj+1; h),

where h > 0 is the step size.

Discrete Herglotz variational principle
Given x = x0, x1, x2 . . . ∈ Q we define z = z0, z1, z2 ∈ R by z0 = 0 and

zj+1 − zj = hL(xj , xj+1, zj , zj+1; h) (∗)

Fix a final “time” N and the values of x0 and xN . Then look for a discrete curve x such
that

dzN
dxj

= 0 ∀j ∈ {1, . . . ,N − 1}

Solving (∗) for zj+1 we obtain a Lagrangian L̃(xj , xj+1, zj ; h) that does not depend on
zj+1:

zj+1 = zj + hL̃(xj , xj+1, zj ; h) (†)
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Direct approach aka implicit approach
From

zj = zj−1 + hL(xj−1, xj , zj−1) (†)
it follows that variations wrt xi evolve as

∂zj
∂xi

=
∂zj−1

∂xi
+ hD1L(xj−1, xj , zj−1)

∂xj−1

∂xi
+ hD2L(xj−1, xj , zj−1)

∂xj
∂xi

+ hD3L(xj−1, xj , zj−1)
∂zj−1

∂xi

= (1 + hD3L(xj−1, xj , zj−1))
∂zj−1

∂xi
+ hD2L(xj−1, xj , zj−1)δ

i
j + hD1L(xj−1, xj , zj−1)δ

i
j−1,

where Di denotes partial derivative wrt i-th entry.

This implies that

Lemma
For h sufficiently small

∂zN
∂xi

= 0 ⇐⇒ ∂zi+1

∂xi
= 0
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Direct approach aka implicit approach

From zi = zi−1 + hL(xi−1, xi , zi−1) we first compute
∂zi
∂xi

= hD2L(xi−1, xi , zi−1)

Then from zi+1 = zi + hL(xi , xi+1, zi ) we obtain

∂zi+1

∂xi
=

∂zi
∂xi

+ hD1L(xi , xi+1, zi ) + hD3L(xi , xi+1, zi )
∂zi
∂xi

= hD2L(xi−1, xi , zi−1) + hD1L(xi , xi+1, zi ) + h2D3L(xi , xi+1, zi )D2L(xi−1, xi , zi−1)

Discrete generalized Euler-Lagrange equation

0 = D2L(xi−1, xi , zi−1) + D1L(xi , xi+1, zi ) + hD2L(xi−1, xi , zi−1)D3L(xi , xi+1, zi ).

If L depends on zj and zj+1

0 = D2L(xj−1, xj , zj−1, zj) + D1L(xj , xj+1, zj , zj+1)

+
hD2L(xj−1,xj ,zj−1,zj )

1−hD4L(xj−1,xj ,zj−1,zj )
(D3L(xj , xj+1, zj , zj+1) + D4L(xj−1, xj , zj−1, zj)).

Mats Vermeeren Contact variational integrators December 4, 2025 20 / 29



Discrete Herglotz variational principle

Discrete generalized Euler-Lagrange equation

0 = D2L(xj−1, xj , zj−1, zj) + D1L(xj , xj+1, zj , zj+1)

+
hD2L(xj−1,xj ,zj−1,zj )

1−hD4L(xj−1,xj ,zj−1,zj )
(D3L(xj , xj+1, zj , zj+1) + D4L(xj−1, xj , zj−1, zj)).

where Di is the partial derivative w.r.t. the i-th variable.

If L a consistent discretization of a continuous Lagrangian L,

D2L(xj−1, xj , zj−1, zj) + D1L(xj , xj+1, zj , zj+1) ≈
∂L
∂x

− d
dt

∂L
∂ẋ

hD2L(xj−1, xj , zj−1, zj)

1 − hD4L(xj−1, xj , zj−1, zj)
≈ ∂L

∂ẋ

D3L(xj , xj+1, zj , zj+1) + D4L(xj−1, xj , zj−1, zj) ≈
∂L
∂z
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Contact structure
The discrete generalized Euler-Lagrange equation can be written as

hD2L(xj−1, xj , zj−1, zj)

1 − hD4L(xj−1, xj , zj−1, zj)
+

hD1L(xj , xj+1, zj , zj+1)

1 + hD3L(xj , xj+1, zj , zj+1)
= 0

Position-momentum formulation

Φ : T ∗Q × R 7→ T ∗Q × R : (xj−1, pj−1, zj−1) 7→ (xj , pj , zj),

where pj = p−j = p+j and

p−j =
hD2L(xj−1, xj , zj−1, zj)

1 − hD4L(xj−1, xj , zj−1, zj)
,

p+j = −
hD1L(xj , xj+1, zj , zj+1)

1 + hD3L(xj , xj+1, zj , zj+1)
.

The map Φ is a contact transformation with respect to the 1-form
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Vakomic approach
S = z0 +

∑
j

(zj+1 − zj) + λj

(
zj+1 − zj − hL(xj , xj+1, zj)

)
Vary both x and z :

0 =
∂S

∂xi
= −λihD1L(xi , xi+1, zi )− λi−1hD2L(xi−1, xi , zi−1)

0 =
∂S

∂zi
= λi−1 − λi − λihD3L(xi , xi+1, zi )

So

−λihD1L(xi , xi+1, zi )− (λi + λihD3L(xi , xi+1, zi )) hD2L(xi−1, xi , zi−1) = 0

and hence

D1L(xi , xi+1, zi ) + (1 + hD3L(xi , xi+1, zi ))D2L(xi−1, xi , zi−1) = 0

0 = D2L(xi−1, xi , zi−1) + D1L(xi , xi+1, zi ) + hD2L(xi−1, xi , zi−1)D3L(xi , xi+1, zi ).
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All contact maps are variational

Theorem
Iterations of any contact transformation

(x0, p0, z0) 7→ (x1, p1, z1)

yield a discrete curve x = (x0, . . . , xN) that solves the discrete Herglotz variational
principle for some discrete Lagrangian L(xj , xj+1, zj).

Proof idea. Like in the symplectic case, every contact transformation has a generating
function, which can be used as a discrete Lagrangian. ■
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Backward error analysis
Solutions of the difference equations

zj+1 − zj
h

= L(xj , xj+1, zj , zj+1; h)

xj+1 − 2xj + xj−1

h2 = F (xj−1, xj , xj+1, zj−1, zj , zj+1; h).

are formally interpolated by solutions of the modified equations{
ż = Lmod(x , ẋ , z , h) = L(x , ẋ , z) + hL1(x , ẋ , z) + h2L2(x , ẋ , z) + . . .

ẍ = fmod(x , ẋ , z ; h) = f (x , ẋ , z) + hf1(x , ẋ , z) + h2f2(x , ẋ , z) + . . .
.

The modified equations are also a contact system
In particular, ẍ = fmod(x , ẋ , z ; h) is the generalized Euler-Lagrange equation of
Lmod(x , ẋ , z , h).

The power series are usually not convergent. Truncations need to be used to make
rigorous statements about long-time error bounds...
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Numerical example: harmonic oscillator
L = 1

2 ẋ
2 − 1

2x
2 − αz ⇒ ẍ = −x − αẋ

Very small damping: contact integrators comparable to symplectic integrators
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Numerical example: harmonic oscillator
L = 1

2 ẋ
2 − 1

2x
2 − αz ⇒ ẍ = −x − αẋ

Slightly larger damping: contact integrators better than symplectic integrators
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Time-depenent example: spin-orbit mechanics
Flexible satellite in a fixed orbit, experiencing torque from gravity.
The torque is a time-dependent linear dissipation:

H =
p2

2
+

Nz(θ, t)

C
+

dC

dt

1
C
z ⇒ θ̈ +

dC

dt

θ̇

C
− Nz(θ, t)

C
= 0.
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Conclusions
▶ Contact mechanics is less known than symplectic mechanics, but has significant

applications in physics and a similarly rich structure.
▶ Contact mechanics is described by Herglotz’ principle, an variational principle with

and “action-dependent” Lagrangian.
▶ Structure-preserving discretizations for contact systems can be obtained using

many of the same ideas as for symplectic systems.
▶ Satisfying theory, but relevance in numerical integration likely more limited than

symplectic integrators.
[V, Bravetti, Seri. Contact variational integrators. J Phys A, 2019]
[Bravetti, Seri, V, Zadra. Numerical integration in celestial mechanics: a case for contact
geometry. Celest Mech Dyn Astr, 2020]
[Anahory Simoes, Martín de Diego, Lainz Valcázar, de León. On the Geometry of Discrete
Contact Mechanics. JNLS, 2021]
[Gaset, Lainz, Mas, Rivas. The Herglotz variational principle for dissipative field theories Geom
Mech, 2024]
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